DOI QR코드

DOI QR Code

Seismic behavior of double steel plates and concrete filled composite shear walls subject to in-plane cyclic load: Experimental investigation

  • Xiaohu Li (School of Civil Engineering and Environment, Zhengzhou University of Aeronautics) ;
  • Hao Luo (China Construction Seventh Engineering Division, Co. Ltd.) ;
  • Xihao Ren (China Construction Seventh Engineering Division, Co. Ltd.) ;
  • Tao Zhang (School of Civil Engineering and Environment, Zhengzhou University of Aeronautics) ;
  • Lei Li (School of Civil Engineering and Environment, Zhengzhou University of Aeronautics) ;
  • Ke Shi (School of Civil Engineering and Environment, Zhengzhou University of Aeronautics)
  • Received : 2023.11.17
  • Accepted : 2024.04.19
  • Published : 2024.05.25

Abstract

This paper aims to investigate the seismic behavior of double steel plate and concrete composite shear wall (DSCW) of shield buildings in nuclear power engineering through experimental study. Hence, a total of 10 specimens were tested to investigate the hysteretic performance of DSCW specimens in detail, in terms of load vs. displacement hysteretic curves, skeleton curves, failure modes, flexural strength, energy dissipation capacity. The experimental results indicated that the thickness of steel plate, vertical load and stiffener have great influence on the shear bearing capacity of shear wall, and the stud space has limited influence on the shear capacity. And finally, a novel simplified formula was proposed to predict the shear bearing capacity of composite shear wall. The predicted results showed satisfactory agreement with the experimental results.

Keywords

Acknowledgement

This research is financially supported by the Science and Technology Project of Henan Province (Grant No. 212102310957 and 222102320014), National Natural Science Foundation of China (Grant No. 52208220), Education Reform Research and Practice Project (Grant No. zhjy23-78), and Graduate Quality Curriculum Project (Grant No. 2023YJSKC05), Advanced Airport Engineering Materials and Structures Project (Grant No. 23ZHTD01009). Their support is gratefully acknowledged.

References

  1. ACI 349M-06 (2006), Code Requirements for Nuclear Safety-Related Concrete Structures and Commentary (Metric), American Concrete Institute, Farmington Hills, USA.
  2. AISC Proposal APPENDIX N9 (2010), Specification for Design of Steel-Plate Composite (SC) Walls in Safety-Related Structures for Nuclear Facilities, Chicago, USA.
  3. Azandariani, M.G., Gholhaki, M. and Kafi, M.A. (2020), "Experimental and numerical investigation of low-yield-strength (LYS) steel plate shear walls under cyclic loading", Eng. Struct., 203, 109866. https://doi.org/10.1016/j.engstruct.2019.109866.
  4. Braverman, J., Morante, R. and Hofmayer, C. (1997), "Assessment of modular construction for safety-related structures at advanced nuclear power plants (No. NUREG/CR-6486; BNL-NUREG-52520)", US Nuclear Regulatory Commission (NRC), Washington, DC (United States), Div. of Engineering Technology, Brookhaven National Lab. (BNL), Upton, NY, USA.
  5. Cao, W.L., Zhang, W.J., Zhang, J.W. and Dong, H.Y. (2011), "Test on embedded perforated steel plate shear wall with concrete filled steel tube columns", Adv. Mater. Res., 243-249, 1450-1455. https://doi.org/10.4028/www.scientific.net/AMR.243-249.1450.
  6. Choi, B.J. and Han, H.S. (2009), "An experiment on compressive profile of the unstiffened steel plate-concrete structures under compression loading", Steel Compos. Struct., 9(6), 519-534. https://doi.org/10.12989/scs.2009.9.6.519.
  7. Dan, D., Fabian, A. and Stoian, V. (2011), "Theoretical and experimental study on composite steel-concrete shear walls with vertical steel encased profiles", J. Constr. Steel Res., 67(5), 67. https://doi.org/10.1016/j.jcsr.2010.12.013.
  8. Gurbuz, M. and Kazaz, I. (2022), "Numerical evaluation on the steel plate shear wall design parameters for improved cyclic behavior", Int. J. Steel Struct., 22(2), 409-429. https://doi.org/10.1007/s13296-022-00582-6.
  9. Hong, S.G., Lee, K.J., Park, D.S., Ham, K.W. and Lee, H.W. (2009), "Out-of-plane shear strength of steel-plate-reinforced concrete walls dependent on bond behavior", Proceedings of the 20th IASMiRT Conference, Espoo, Finland, August.
  10. JEAG 4618-05 (2005), Technical Guidelines for Aseismic Design of Steel Plate Reinforced Concrete Structures-Buildings and Structures, Japan Electric Association, Tokyo, Japan.
  11. KEPIC-SNG (2010), Specification for Safety-Related Steel Plate Concrete Structures for Nuclear Facilities, Korea Electric Association, Seoul, Korea.
  12. Kim, W., Lee, S.J., Jung, R.Y. and Kim, M. (2009), "Damping values for seismic design of nuclear power plant SC structures", Proceedings of the 20th IASMiRT Conference, Espoo, Finland, August.
  13. Li, X. and Li, X. (2017), "Steel plates and concrete filled composite shear walls related nuclear structural engineering: experimental study for out-of-plane cyclic loading", Nucl. Eng. Des., 315, 144-154. https://doi.org/10.1016/j.nucengdes.2017.02.019.
  14. Li, X.H., Li, X.J., Shen, L.T. and Liu, J. (2016), "Experimental study of composite shear walls with double steel plates and filled concrete for a nuclear island structure under low cyclic loading", J. Beijing Univ. Technol., 42(10), 14988-1508. https://doi.org/10.11936/bjutxb2016020016.
  15. Liang, Q.Q., Uy, B., Wright, H.D. and Bradford, M.A. (2003), "Local and post-local buckling of double skin composite panels", Struct. Buil., 156(2), 111-119. https://doi.org/10.1680/stbu.2003.156.2.111.
  16. Liu, J.B., Wang, D.L., Wang, Z.G. and Wang F. (2019), "Experimental study on in-plane shear behavior of double-skin-composite shear walls in nuclear engineering", Earth. Eng. Eng. Dyn., 39(5), 9. https://doi.org/10.13197/j.eeev.2019.05.19.liujb.002.
  17. Ma, Y., Zhang, B., Peng, A. and Wang, L. (2023), "Experimental and analytical investigation on shear mechanism of steel-uhpc composite t-perfobond shear connectors", Eng. Struct., 286, 116061. https://doi.org/10.1016/j.engstruct.2023.116061.
  18. Montgomery, C.J., Medhekar, M., Lubell, A.S., Prion, H.G.L., Ventura, C.E. and Rezai, M. (2001), "Unstiffened steel plate shear wall performance under cyclic loading", J. Struct. Eng., 127, 973-975. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:8(973).
  19. Nannan, Z., Yaohong, W., Qing, H. and Hao, S. (2020), "Bearing capacity of composite shear wall incorporating a concrete-filled steel tube boundary and column-type reinforced wall", Adv. Struct. Eng., 23(10), 2188-2203. https://doi.org/10.1177/1369433220911156.
  20. Ozaki, M., Akita, S., Osuga, H., Nakayama, T. and Adachi, N. (2004), "Study on steel plate reinforced concrete panels subjected to cyclic in-plane shear", Nucl. Eng. Des., 228(1/3), 225-244. https://doi.org/10.1016/j.nucengdes.2003.06.010.
  21. Qin, Y., Shu, G.P., Zhou, G.G. and Han, J.H. (2019), "Compressive behavior of double skin composite wall with different plate thicknesses", Constr. Steel Res., 157, 297-313. https://doi.org/10.1016/j.jcsr.2019.02.023.
  22. Sener, K.C., Varma, A.H. and Ayhan, D. (2015b), "Steel-plate composite (SC) walls: Out-of-plane flexural behavior, database, and design", J. Constr. Steel Res., 108, 46-59. https://doi.org/10.1016/j.jcsr.2015.02.002.
  23. Sener, K.C., Varma, A.H., Booth, P.N. and Fujimoto, R. (2015a), "Seismic behavior of a containment internal structure consisting of composite SC walls", Nucl. Eng. Des., 295, 804-816. https://doi.org/10.1016/j.nucengdes.2015.07.038.
  24. Shi, J., Guo, L. and Qu, B. (2022), "In-plane cyclic tests of double-skin composite walls with concrete-filled steel tube boundary elements", Eng. Struct., 250, 113301. https://doi.org/10.1016/j.engstruct.2021.113301.
  25. Sucasaca, J. and Saez, E. (2021), "Topographical and structure-soil-structure interaction effects on dynamic behavior of shear-wall buildings on coastal scarp", Eng. Struct., 247(4), 113113. https://doi.org/10.1016/j.engstruct.2021.113113.
  26. Takeuchi, M., Narikawa, M., Matsuo, I., Hara, K. and Usami, S. (1998), "Study on a concrete filled structure for nuclear power plants", Nucl. Eng. Des., 179(2), 209-223. https://doi.org/10.1016/S0029-5493(97)00282-3.
  27. Varma, A.H., Malushte, S.R., Sener, K.C. and Lai, Z. (2014), "Steel-plate composite (SC) walls for safety related nuclear facilities: design for in-plane forces and out-of-plane moments", Nucl. Eng. Des., 269, 240-249. https://doi.org/10.1016/j.nucengdes.2013.09.019.
  28. Vecchio, F.J. and Mcquade, I. (2011), "Towards improved modeling of steel-concrete composite wall elements", Nucl. Eng. Des., 241(8), 2629-2642. https://doi.org/10.1016/j.nucengdes.2011.04.006.
  29. Yang, Y., Wu, B., Yao, Y.P., Xu, L.Y., Zhang, D. and Wang, S.H. (2023), "Study on axial compression performance of double steel plate-concrete composite walls with stiffening ribs and tie plates", Eng. Struct., 274, 115182. https://doi.org/10.1016/j.engstruct.2022.115182.
  30. Zhang, Y.J. and Li, X.J. (2015), "Experimental research on seismic behavior of wall component with double steel plate and infill concrete", J. Wuhan Univ., 48(5), 658-665. https://doi.org/10.14188/j.1671-8844.2015-05-011
  31. Zhou, J., Fang, X. and Yao, Z. (2018), "Mechanical behavior of a steel tube-confined high-strength concrete shear wall under combined tensile and shear loading", Eng. Struct., 171, 673-685. https://doi.org/10.1016/j.engstruct.2018.06.024.