DOI QR코드

DOI QR Code

Some nanotoxicity effects of copper (60-80 nm) and copper oxide (40 nm) nanoparticles on Artemia salina

  • Received : 2021.09.02
  • Accepted : 2024.04.25
  • Published : 2024.05.25

Abstract

In this study, nanotoxicity tests were made by exposure of Artemia salina to copper (Cu 60-80 nm) and copper oxide (CuO 40 nm) nanoparticles (NPs) at different concentrations (0.2, 1, 5, 10, 25, and 50 mg/L). The LC50 value of Cu (60-80 nm) NPs on the A. salina individuals at the beginning (0), 24th, 48th and 72nd hours and elimination period was 52.37 mg/L while the LC50 value of CuO (40 nm) NPs was 55.39 mg/L. The results of UV-Vis absorbance values showed that all statistical data revealed that maximum effect was observed between 24-30 hours and 25 ppm absorbance concentration was more effective. The multiple R, correlation coefficient (R2) and adjusted R2 values of Cu NP for the suitable Quadratic model were, respectively; 92.96 %, 86.42 % and 76.71 % while they are 98.31 %, 96.64 % and 94.25 % for CuO NP. Also, the data, was indicated effect size significantly changed based on the type and size of NP. Considering the microscope results, it was clearly noticed that A. salina organisms took the NPs in to their body. The accumulation in the gut of A. salina was observed and the images were taken with phase contrast microscope for both of NPs. The highest decrease for survival rates of A. salina individuals exposed to Cu NP was observed in the 10 ppm concentration (43.47 %) and in the 5 ppm concentration (46.20 %) for CuO NP. The results revealed that Cu and CuO NPS showed different toxic effects and that Cu NPs were more toxic than CuO.

Keywords

Acknowledgement

This research is supported by a grant (Grant No: 114Y087) from The Scientific and Technological Research Council of Turkey (TUBITAK) to Dr. Mehmet Ates at Munzur University. A PhD scholarship was awarded to the first author (Isil Canan Cicek Cimen) and reports data from the first author's Ph.D. thesis conducted at Munzur University.

References

  1. Adam, N., Schmitt, C., De Bruyn, L., Knapen, D. and Blust, R. (2015), "Aquatic acute species sensitivity distributions of ZnO and CuO nanoparticles", Sci. Total Environ., 526, 233-242. https://doi.org/10.1016/j.scitotenv.2015.04.064.
  2. Arulvasu, C., Jennifer, S.M., Prabhu, D. and Chandhirasekar, D. (2014), "Toxicity effect of silver nanoparticles in brine shrimp Artemia", Sci. World. J., 256919. https://doi.org/10.1155/2014/256919.
  3. Ates, M., Daniels, J., Arslan, Z. and Farah, I.O., (2013), "Effects of aqueous suspensions of titanium dioxide nanoparticles on Artemia salina: Assessment of nanoparticle aggregation, accumulation, and toxicity", Environ. Monit. Assess., 185, 3339-3348. https://doi.org/10.1007/s10661-012-2794-7.
  4. Ates, M., Aksu, O., Danabas, D., Kutlu, B., Cicek Cimen, I.C., Unal I. and Ertit Tastan B. (2019a), "Investigation of statistical experimental design results showing UV-Vis absorbance values of characterized alpha and gamma Fe2O3 nanoparticles", Int. J. Agric. Natural Sci., 12(2), 45- 48.
  5. Ates, M., Danabas, D., Ertit Tastan, B., Unal, I., Cicek Cimen, I.C., Aksu O., and Kutlu B., (2019b), "Investigation of statistical experimental design results showing UV-Vis absorbance values of characterized Zn and ZnO nanoparticles", Int. J. Agric. Natural Sci., 12(1), 9-16.
  6. Ates, M., Danabas, D., Ertit Tastan, B., Unal, I., Cicek Cimen, I.C., Aksu, O., Kutlu, B. and Arslan, Z. (2020), "Assessment of oxidative stress on Artemia salina and Daphnia magna after exposure to Zn and ZnO nanoparticles", B. Environ. Contam. Tox., 104, 206-214. https://doi.org/10.1007/s00128-019-02751-6.
  7. Bao, S., Lu, Q., Fang, T., Dai, H. and Zhang, C. (2015), "Assessment of the toxicity of CuO nanoparticles by using Saccharomyces cerevisiae mutants with multiple genes deleted", Appl. Environ. Microbiol., 81(23), 8098-8107. https://doi.org/10.1128/AEM.02035-15.
  8. Batley, G.E., Kirby, J.K. and McLaughlin, M.J. (2013), "Fate and risks of nanomaterials in aquatic and terrestrial environments", Acc. Chem. Res., 46(3), 854-862. https://doi.org/10.1021/ar2003368.
  9. Bhuvaneshwari, M., Sagar, B., Doshi, S., Chandrasekaran, N. and Mukherjee, A. (2017), "Comparative study on toxicity of ZnO and TiO2 nanoparticles on Artemia salina: Effect of pre-UV-A and visible light irradiation", Environ. Sci. Pollut. Res., 24(6), 5633-5646. https://doi.org/10.1007/s11356-016-8328-z.
  10. Cimen, I.C.C., Danabas, D. and Ates, M. (2020), "Comparative effects of Cu (60-80 nm) and CuO (40 nm) nanoparticles in Artemia salina: Accumulation, elimination and oxidative stress", Sci. Total Environ., 717, 137230. https://doi.org/10.1016/j.scitotenv.2020.137230.
  11. Danabas, D., Ates, M., Ertit-Tastan, B., C icek-C imen, I.C., u nal, I., Aksu, O . and Kutlu, B. (2019), "Investigation of the effects of Zn and ZnO nanoparticles on the survival rates of Artemia salina", Int. J. Agric. Natural Sci., 12(1), 8-11.
  12. Danabas, D., Ates, M., Tastan, B.E., Cimen, I.C.C., Unal, I., Aksu, O. and Kutlu, B. (2020), "Effects of Zn and ZnO nanoparticles on Artemia salina and Daphnia magna Organisms: Toxicity, accumulation and elimination", Sci. Total Environ., 711, 134869. https://doi.org/10.1016/j.scitotenv.2019.134869.
  13. Dobretsov, S., Sathe, P., Bora, T., Barry, M., Myint, M.T.Z. and Abri, M.A. (2020), "Toxicity of different zinc oxide nanomaterials at three trophic levels: implications for development of low-toxicity antifouling agents", Environ. Toxicol. Chem., 39(7), 1343-1354. https://doi.org/10.1002/etc.4720
  14. Dogan Calhan, S. and Gundogan, M. (2020), "Copper oxide nanoparticles: Synthesis, characterization, antimicrobial activities and catalytic reduction of methylene blue", J. Turkish Chem. Soc. A Chem., 7(2), 561-570. https://doi.org/10.18596/jotcsa. 650993.
  15. Dugal, S. and Mascarenhas, S. (2015), "Chemical synthesis of copper nanoparticles and its antibacterial effect against gram negative pathogens", J. Adv. Sci. Res., 6(3).
  16. Gophen, M. and Geller, W. (1984), "Filter mesh size and food particle uptake by Daphnia", Oecologia, 64(3), 408-412. https://doi.org/10.1007/BF00379140.
  17. Gnanavel, V., Palanichamy, V. and Roopan, S.M. (2017). "Biosynthesis and characterization of copper oxide nanoparticles and ist anticancer activity on human colon cancer cell lines (HCT-116)", J. Photoc. Photobio. B., 171, 133-138.
  18. Hou, J., Wang, X., Hayat, T. and Wang, X. (2017), "Ecotoxicological effects and mechanism of CuO nanoparticles to individual organisms", Environ. Pollut., 221, 209-217. https://doi.org/10.1016/j.envpol.2016.11.066.
  19. Hua, J., Vijver, M.G., Richardson, M.K., Ahmad, F. and Peijnenburg, W.J. (2014), "Particle specific toxic effects of differently shaped zinc oxide nanoparticles to zebrafish embryos (Danio rerio)", Environ. Toxicol. Chem., 33(12), 2859-2868. https://doi.org/10.1002/etc.2758.
  20. Huang, W., Zhou, Y., Zhao, T., Tan, L. and Wang, J. (2022), "The effects of copper ions and copper nanomaterials on the output of amino acids from marine microalgae", Environ. Sci. Pollut. Res. Int., 29(7), 9780-9791. https://doi.org/10.1007/s11356-021-16347-3.
  21. Jiang, C., Castellon, B.T., Matson, C.W., Aiken, G.R. and Hsu-Kim, H. (2017), "Relative contributions of copper oxide nanoparticles and dissolved copper to Cu uptake kinetics of Gulf killifish (Fundulus grandis) embryos", Environ. Sci. Technol., 51(3), 1395-1404. https://doi.org/10.1021/acs.est.6b04672.
  22. Kalatehjari, P., Yousefian, M. and Khalilzadeh, M.A. (2015), "Assessment of antifungal effects of copper nanoparticles on the growth of the fungus Saprolegnia sp. on white fish (Rutilus frisiikutum) eggs", Egypt. J. Aquat. Res., 41(4), 303-306, https://doi.org/10.1016/j.ejar.2015.07.004.
  23. Keller, A.A., Adeleye, A.S., Conway, J.R., Garner, K.L., Zhao, L., Cherr, G.N., Hong, J., Gardea-Torresday, J.L., Godwin, H.A., Hanna, S., Ji, Z., Kaweeteerawat, C., Lin, S., Lenihan, H.S., Miller, R.J., Nel, A.E., Peralta-Videa, J.R., Walker, S.L., Taylor, A.A., Torres-Duarte, C., Zink, J.I. and Zuverza-Mena, N. (2017), "Comparative environmental fate and toxicity of copper nanomaterials", NanoImpact, 7, 28-40, https://doi.org/10.1016/j.impact.2017.05.003.
  24. Khan, R., Inam, M.A., Park, D.R., Khan, S., Akram, M. and Yeom, I.T. (2019), "The removal of CuO nanoparticles from water by conventional treatment c/f/s: The effect of pH and natural organic matter", Molecules, 24(5), 914, https://doi.org/10.3390/molecules24050914
  25. Kim, S., Lee, S. and Lee, I. (2012), "Alteration of phytotoxicity and oxidant stress potential by metal oxide nanoparticles in Cucumis sativus", Water Air Soil Pollut., 223, 2799-2806, https://doi.org/10.1007/s11270-011-1067-3.
  26. Lindh, S., Razmara, P., Bogart, S. and Pyle, G. (2019), "Comparative tissue distribution and depuration characteristics of copper nanoparticles and soluble copper in rainbow trout (Oncorhynchus mykiss)", Environ. Toxicol. Chem., 38(1), 80-89. https://doi.org/10.1002/etc.4282.
  27. Llorens, A., Lloret, E., Picouet, P. A., Trbojevich, R. And Fernandez, A. (2012), "Metallic-based micro and nanocomposites in food contact materials and active food packaging", Trends Food Sci Tech., 24(1), 19-29, https://doi.org/10.1016/j.tifs.2011.10.001.
  28. Ma, H., Williams, P.L. and Diamond, S.A. (2013), "Ecotoxicity of manufactured ZnO nanoparticles-a review", Environ. Pollut., 172, 76-85, https://doi.org/10.1016/j.envpol.2012.08.011.
  29. Madhav, M.R., David, S.E.M., Kumar, R.S.S., Swathy, J.S., Bhuvaneshwari, M., Mukherjee, A. and Chandrasekaran, N. (2017), "Toxicity and accumulation of Copper oxide (CuO) nanoparticles in different life stages of Artemia salina", Environ. Toxicol. Pharmacol., 52, 227-238.
  30. Majumder, S. and Neogi, S. (2016), "Antimicrobial activity of copper oxide nanoparticles coated on cotton fabric and synthesized by one-pot method", Adv. Sci. Eng. Med., 8(2), 102-111. https://doi.org/10.1166/asem.2016.1832.
  31. Maniprasad, P., Young, M. and Santra, S. (2015), "Mixed-valence core-shell copper loaded silica nanoparticle-a powerful antimicrobial composite material for agricultural crop protection", In World Congress on New Technologies, Barcelona, Spain, 1-8.
  32. Marwood, C., McAtee, B., Kreider, M., Ogle, R.S., Finley, B., Sweet, L. and Panko, J. (2011), "Acute aquatic toxicity of tire and road wear particles to alga, daphnid, and fish", Ecotoxicology, 20(8), 2079-2089, https://doi.org/10.1007/s10646-011-0750-x.
  33. Mazzaglia, A., Zagami, R., Romeo, A., Ceraolo, F., Vazzana, M., Castriciano, M.A. and Scolaro, L.M. (2018), "Supramolecular adducts of anionic porphyrins and a biocompatible polyamine: Effect of photodamage-on human red blood cells", J. Nanosci. Nanotechnol., 18(10), 7269-7274. https://doi.org/10.1166/jnn.2018.15747.
  34. Montes, M., Pierce, C.G., Lopez-Ribot, J.L., Bhalla, A.S. and Guo, R.Y. (2016), "Properties of silver and copper nanoparticle containing aqueous suspensions and evaluation of their in vitro activity against Candida albicans and Staphylococcus aureus biofilms", J. Nano Res., 37, 109-121. https://doi.org/10.4028/www.scientific.net/JNanoR.37.109.
  35. Naeemi, A.S., Elmi, F., Vaezi, G. and Ghorbankhah, M. (2020), "Copper oxide nanoparticles induce oxidative stress mediated apoptosis in carp (Cyprinus carpio) larva", Gene Rep., 19, 100676. https://doi.org/10.1016/j.genrep.2020.100676.
  36. Noureen, A., Jabeen, F., Tabish, T. A., Ali, M., Iqbal, R., Yaqub, S. and Shakoor Chaudhry, A. (2019), "Histopathological changes and antioxidant responses in common carp (Cyprinus carpio) exposed to copper nanoparticles", Drug. Chem. Toxicol., 44(4), 372-379, https://doi.org/10.1080/01480545.2019.1606233.
  37. Ozkan, Y., Altinok, I., Ilhan, H. and Sokmen, M. (2016), "Determination of TiO2 and AgTiO2 nanoparticles in Artemia salina: Toxicity, morphological changes, uptake and depuration", B. Environ. Contam. Tox., 96, 36-42, https://doi.org/10.1007/s00128-015-1634-1.
  38. Park, J.W., Lee, I.C., Shin, N.R., Jeon, C.M., Kwon, O.K., Ko, J.W., Kim, J.C., Oh, S.R., Shin, I.S. and Ahn, K.S. (2016), "Copper oxide nanoparticles aggravate airway inflammation and mucus production in asthmatic mice via MAPK signalling", Nanotoxicology, 10(4), 445-452, https://doi.org/10.3109/17435390.2015.1078851.
  39. Ponmurugan, P., Manjukarunambika, K., Elango, V. and Gnanamangai, B.M. (2016), "Antifungal activity of biosynthesised copper nanoparticles evaluated against red root-rot disease in tea plants", J. Exp. Nanosci., 11(13), 1019-1031. https://doi.org/10.1080/17458080.2016.1184766.
  40. Rajabi, S., Ramazani, A., Hamidi, M. and Naji, T. (2015), "Artemia salina as a model organism in toxicity assessment of nanoparticles", Daru J. Pharm. Sci., 23(1), 20, https://doi.org/10.1186/s40199-015-0105-x.
  41. Ray, D., Pramanik, S., Mandal, R.P., Chaudhuri, S. and De, S. (2015), "Sugar-mediated 'green' synthesis of copper nanoparticles with high antifungal activity", Mater. Res. Express., 2(10), 105002. https://doi.org/10.1088/2053-1591/2/10/105002.
  42. Samet, J.M., DeMarini, D.M. and Malling, H.V. (2004), "Do airborne particles induce heritable mutations?", Science, 304(5673), 971-972. https://doi.org/10.1126/science.1097441.
  43. Song, L., Vijver, M.G., Peijnenburg, W.J., Galloway, T.S. and Tyler, C.R. (2015), "A comparative analysis on the in vivo toxicity of copper nanoparticles in three species of freshwater fish", Chemosphere, 139, 181-189. https://doi.org/10.1016/j.chemosphere.2015.06.021.
  44. Takenaka, S., Karg, E., Roth, C., Schulz, H., Ziesenis, A., Heinzmann, U., Schramel, P. and Heyder, J. (2001), "Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats", Environ. Health Perspect., 109(4), 547-551. https://doi.org/10.1289/ehp.01109s4547.
  45. Vajargah, F.M., Imanpoor, M.R., Shabani, A., Hedayati, A. and Faggio, C. (2019), "Effect of long-term exposure of silver nanoparticles on growth indices, hematological and biochemical parameters and gonad histology of male goldfish (Carassius auratus gibelio)", Microsc. Res. Tech., 82(7), 1224-1230. https://doi.org/10.1002/jemt.23271.
  46. Vijayakumar, S., Vaseeharan, B., Sudhakaran, R., Jeyakandan, J., Ramasamy, P., Sonawane, A. and Faggio, C. (2019), "Bioinspired zinc oxide nanoparticles using lycopersicon esculentum for antimicrobial and anticancer applications", J. Clust. Sci., 30, 1465-1479. https://doi.org/10.1007/s10876-019-01590-z.
  47. Villanueva, M.E., Diez, A.M.D.R., González, J.A., Pérez, C.J., Orrego, M., Piehl, L., Teves, S. and Copello, G.J. (2016), "Antimicrobial activity of starch hydrogel incorporated with copper nanoparticles", ACS Appl. Mater. Int, 8(25), 16280-16288. https://doi.org/10.1021/acsami.6b02955.
  48. Wang, D., Lin, Z., Wang, T., Yao, Z., Qin, M., Zheng, S. and Lu, W. (2016), "Where does the toxicity of metal oxide nanoparticles come from: The nanoparticles, the ions, or a combination of both?", Hazard. Mater., 308, 328-334, https://doi.org/10.1016/j.jhazmat.2016.01.066.
  49. Wu, F., Harper, B.J., Crandon L.E. and Harper, S.L. (2020), "Assessment of Cu and CuO nanoparticle ecological responses using laboratory small-scale microcosms", Environ. Sci. Nano, 7, 105-115 Https://doi.org/10.1039/c9en01026b
  50. Yang, L. and Wang, W.X. (2019), "Comparative contributions of copper nanoparticles and ions to copper bioaccumulation and toxicity in barnacle larvae", Environ. Pollut., 249, 116-124. https://doi.org/10.1016/j.envpol.2019.02.103.
  51. Zhao, C.M. and Wang, W.X. (2012), "Importance of surface coatings and soluble silver in silver nanoparticles toxicity to Daphnia magna", Nanotoxicology, 6(4), 361-370. https://doi.org/10.3109/17435390.2011.579632.
  52. Zhu, Y., Xu, J., Lu, T., Zhang, M., Ke, M., Fu, Z., Pan, X. and Qian, H. (2017), "A comparison of the effects of copper nanoparticles and copper sulfate on Phaeodactylum tricornutum physiology and transcription", Environ. Toxicol. Pharmacol., 56, 43-49, Https://doi.org/10.1016/j.etap.2017.08.029.
  53. Zhu, S., Gong, L., Li, Y., Xu, H., Gu, Z. and Zhao, Y. (2019), "Safety assessment of nanomaterials to eyes: An important but neglected issue", Adv. Sci., 6, 1802289, https://doi.org/10.1002/advs.201802289.