DOI QR코드

DOI QR Code

Sustainable construction material using nanosilica and multi-walled carbon nanotubes in cement concrete

  • Received : 2023.09.28
  • Accepted : 2024.03.26
  • Published : 2024.05.25

Abstract

Nanotechnology is a popular field in the construction industry due to its multiple functions. It mitigates CO2 emissions and enhances the desirable properties of concrete by replacing small amounts of cement with supplements. This study assess the sustainability impact of using two different nanoparticles partially replacing the cement with 0.3%, 0.6%, 1.0% of nano silica (NS) and 0.03%, 0.045%, 0.06% of Multi-Walled Carbon Nanotubes (MWCNT) in the green concrete mix developement. Nano-sized fragments at the atomic scale tends to modify the properties of concrete. Concrete may increase its strength, durability by adding nanocomposite materials, which will decrease the amount of nano and micropores in structural parts. The strength of the structural elements can be greatly improved and allowing them to withstand higher loads and resist deformation. It improved durability properties by 64.8% in water absorption, 56.4% in acid attack, 78.1% in sulphate attack, and 53.4% in chloride attack. There was an improvement in compressive strength of 37% and split tensile strength of 90%. SEM, FTIR, and XRD investigations have used to look at the microstructural characteristics of nanoconcrete dictated the microstructure characteristics may be made more consistent and dense by adding nanocomposite materials.

Keywords

References

  1. Abhilash, P.P., Nayak, D.K., Sangoju, B., Kumar, R. and Kumar, V. (2021) "Effect of nano-silica in concrete: A review", Constr. Build. Mater., 278, 122347. https://doi.org/10.1016/j.conbuildmat.2021.122347.
  2. Adhikary, S.K., Rudzionis, Z. and Rajapriya, R. (2020), "The effect of carbon nanotubes on the flowability, mechanical, microstructural and durability properties of cementitious composite: an overview", Sustainability, 12(20), 1-25. https://doi.org/10.3390/su12208362.
  3. Allujami, H.M., Abdulkareem, M., Jassam, T.M., Al-Mansob, R.A., Ibrahim, A., Jing, L.N. and Hok, C.Y. (2022), "Mechanical properties of concrete containing recycle concrete aggregates and multi-walled carbon nanotubes under static and dynamic stresses", Case Stud. Constr. Mater., 17, e01651. https://doi.org/10.1016/j.cscm.2022.e01651.
  4. Allujami, H.M., Abdulkareem, M., Jassam, T.M., Al-Mansob, R.A., Ibrahim, A., Jing, L.N. and Hok, C.Y. (2022), "Nanomaterials in recycled aggregates concrete applications: Mechanical properties and durability: A review", Cogent Eng., 9(1), 2122885. https://doi.org/10.1080/23311916.2022.2122885
  5. Amin, M. and Abu El-Hassan, K. (2015), "Effect of using different types of nano materials on mechanical properties of high strength concrete", Constr. Build. Mater., 80, 116-124. https://doi.org/10.1016/j.conbuildmat.2014.12.075.
  6. Atahan, H.N. and Arslan, K.M. (2016), "Improved durability of cement mortars exposed to external sulfate attack: the role of nano. and micro additives", Sust. Cities Soci., 22, 40-48. https://doi.org/10.1016/j.scs.2016.01.008.
  7. Berodier, E.M.J., Muller, A.C.A. and Scrivener, K.L. (2020), "Effect of sulfate on C-S-H at early age", Cement Concr. Res., 138, 106248. https://doi.org/10.1016/j.cemconres.2020.106248.
  8. Camacho, M. del C., Galao, O., Baeza, F.J., Zornoza, E. and Garces, P. (2014), "Mechanical properties and durability of CNT cement composites", Mater., 7(3), 1640-1651. https://doi.org/10.3390/ma7031640.
  9. Chandramouli, K., Pannirselvam, N., Vijayakumar, D., Anitha, V. and Sai Kumar, A. (2019), "Effect of nano silica and multi walled carbon nano tubes on mechanical properties of concrete", Int. J. Adv. Sci. Technol., 28(16), 546-553.
  10. Dahish, A. Hany., A. and Ahmed, D. Almutairi. (2023), "Effect of elevated temperatures on the compressive strength of nanosilica and nano-clay modified concretes using response surface methodology", Case Stud. Constr. Mater., 18, e02032. https://doi.org/10.1016/j.cscm.2023.e02032.
  11. Dheeraj Swamy, B.L.P., Raghavan, V., Srinivas, K., Rao, K.N., Lakshmanan, M., Jayanarayanan, K. and Mini, K.M. (2017), "Influence of silica based carbon nano tube composites in concrete", Adv. Compos. Lett., 26(1), 12-17. https://doi.org/10.1177/096369351702600103.
  12. Duraia, E.S.M., Hannora, A., Mansurov, Z. and Beall, G.W. (2012), "Direct growth of carbon nanotubes on hydroxyapatite using MPECVD", Mater. Chem. Phys., 132(1), 119-124. https://doi.org/10.1016/j.matchemphys.2011.11.006.
  13. Elkady, H. and Hassan, A. (2018), "Assessment of high thermal effects on carbon nanotube (cnt) - reinforced concrete", Sci. Rep., 8(1), 1-11. https://doi.org/10.1038/s41598-018-29663-5.
  14. Hu, Y., Jiang, R., Zhang, J., Zhang, C. and Cui, G. (2018), "Synthesis and properties of magnetic multi-walled carbon nanotubes loaded with Fe4N nanoparticles", J. Mater. Sci. Technol., 34(5), 886-890. https://doi.org/10.1016/j.jmst.2017.02.007.
  15. IS 516:1959 (2004), Method of tests for strength of concrete, Bureau of Indian Standards; New Delhi, India.
  16. IS 5816 (1999), Indian standard splitting tensile strength of concrete, Bureau of Indian Standards; New Delhi, India.
  17. Kumar, A., Singh, K. and Pandey, O.P. (2014), "One step synthesis and growth mechanism of carbon nanotubes", J. Mater. Sci. Technol., 30(2), 112-116. https://doi.org/10.1016/j.jmst.2013.09.005.
  18. Li, H., Xiao, H. G., Yuan, J. and Ou, J. (2004), "Microstructure of cement mortar with nanoparticles", Compos. Part B Eng., 35(2), 185-189. https://doi.org/10.1016/S1359-8368(03)00052-0.
  19. Li, W., Ji, W., Isfahani, F.T., Wang, Y., Li, G., Liu, Y. and Xing, F. (2017), "Nano-silica sol-gel and carbon nanotube coupling effect on the performance of cement-based materials", Nanomaterials, 7(7). 185. https://doi.org/10.3390/nano7070185.
  20. Li, Y., Li, H., Wang, Z. and Jin, C. (2020), "Effect and mechanism analysis of functionalized multi-walled carbon nanotubes (MWCNTs) on C-S-H gel", Cement Concr. Res., 128(100), 105955. https://doi.org/10.1016/j.cemconres.2019.105955.
  21. Madenci, E. (2021), "Free vibration analysis of carbon nanotube RC nanobeams with variational approaches", Adv. Nano Res., 11(2), 157-171. https://doi.org/https://doi.org/10.12989/anr.2021.11.2.157
  22. Manzur, T. and Yazdani, N. (2015), "Optimum mix ratio for carbon nanotubes in cement mortar", KSCE J. Civil Eng., 19(5), 1405-1412. https://doi.org/10.1007/s12205-014-0721-x.
  23. Mishra, G. (2022), "Co-effect of carbon nanotube and nano-sized silica on dispersion and mechanical performance in cementitious system", Diamond Relat. Mater., 127, 109162. https://doi.org/10.1016/j.diamond.2022.109162.
  24. Mohamed, A.M. (2016), "Influence of nano materials on flexural behavior and compressive strength of concrete", HBRC J., 12(2), 212-225. https://doi.org/10.1016/j.hbrcj.2014.11.006.
  25. Musso, S., Tulliani, J.M., Ferro, G. and Tagliaferro, A. (2009), "Influence of carbon nanotubes structure on the mechanical behavior of cement composites", Compos. Sci. Technol., 69, 1985-1990. https://doi.org/10.1016/j.compscitech.2009.05.002.
  26. Narasimman, K., Jassam, T.M., Velayutham, T.S., Yaseer, M.M. M. and Ruzaimah, R. (2020), "The synergic influence of carbon nanotube and nanosilica on the compressive strength of lightweight concrete", J. Build. Eng., 32, 101719. https://doi.org/10.1016/j.jobe.2020.101719.
  27. Nguyen, T.N.M., Yoo, D.Y. and Kim, J.J. (2020), "Cementitious material reinforced by carbon nanotube-Nylon 66 hybrid nanofibers: Mechanical strength and microstructure analysis", Mater. Today Commun., 23, 100845. https://doi.org/10.1016/j.mtcomm.2019.100845.
  28. Qian, X., Wang, J., Wang, L., Fang, Y., Chen, P. and Li, M. (2022), "A clean dispersant for nano-silica to enhance the performance of cement mortars", J. Clean. Prod., 371, 133647. https://doi.org/10.1016/j.jclepro.2022.133647.
  29. Raheem, A.A., Abdulwahab, R. and Kareem, M.A. (2021), "Incorporation of metakaolin and nanosilica in blended cement mortar and concrete- a review", J. Clean. Prod., 290, 125852. https://doi.org/10.1016/j.jclepro.2021.125852.
  30. Sakulich, A.R. (2011), "Reinforced geopolymer composites for enhanced material greenness and durability", Sust. Cities Soc., 1(4), 195-210. https://doi.org/10.1016/j.scs.2011.07.009.
  31. Saleh, A.N., Attar, A.A., Ahmed, O.K. and Mustafa, S.S. (2021) "Improving the thermal insulation and mechanical properties of concrete using nano-sio2", Results Eng., 12, 100303. https://doi.org/10.1016/j.rineng.2021.100303.
  32. Saloma, N.A., Imran, I. and Abdullah, M. (2015), "Improvement of concrete durability by nanomaterials", Procedia Eng., 125, 608-612. https://doi.org/10.1016/j.proeng.2015.11.078.
  33. Shariati, A., Barati, M.R., Ebrahimi, F. and Toghroli, A. (2019), "Investigation of micro structure and surface effects on vibrational characteristics of nanobeams based on nonlocal couple stress theory", Adv. Nano Res., 8(3), 191-202. https://doi.org/https://doi.org/10.12989/anr.2020.8.3.191.
  34. Shi, T., Gao, Y., Corr, D.J. and Shah, S.P. (2019), "FTIR study on early-age hydration of carbon nanotubes-modified cement-based materials", Adv. Cement Res., 31(8), 353-361. https://doi.org/10.1680/jadcr.16.00167.
  35. Singh, L.P., Goel, A., Bhattachharyya, S.K., Ahalawat, S., Sharma, U. and Mishra, G. (2015), "Effect of morphology and dispersibility of silica nanoparticles on the mechanical behaviour of cement mortar", Int. J. Concr. Struct. Mater., 9(2), 207-217. https://doi.org/10.1007/s40069-015-0099-2.
  36. Suchorzewski, J., Prieto, M. and Mueller, U. (2020), "An experimental study of self-sensing concrete enhanced with multi-wall carbon nanotubes in wedge splitting test and DIC", Constr. Build. Mater., 262, 120871. https://doi.org/10.1016/j.conbuildmat.2020.120871.
  37. Tapeinos, I.G., Miaris, A., Mitschang, P. and Alexopoulos, N.D. (2012), "Carbon nanotube-based polymer composites: A tradeoff between manufacturing cost and mechanical performance", Compos. Sci. Technol., 72(7), 774-787. https://doi.org/10.1016/j.compscitech.2012.02.004.
  38. Tounsi, A., Benguediab, S., Adda Bedia, E.A., Semmah, A. and Zidour, M. (2013), "Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes", Adv. Nano Res., 1(1), 1-11. https://doi.org/10.12989/anr.2013.1.1.001.
  39. Vera-Agullo, J., Chozas-Ligero, V., Portillo-Rico, D., Garcia-Casas, M.J., Gutierrez-Martinez, A., Mieres-Royo, J.M. and Gravalos-Moreno, J. (2009), "Mortar and concrete reinforced with nanomaterials", Nanotechnol. Constr., 3, 383-388. https://doi.org/10.1007/978-3-642-00980-8.
  40. Wang, J., Dong, S., Ashour, A., Wang, X. and Han, B. (2020), "Dynamic mechanical properties of cementitious composites with carbon nanotubes", Mater. Today Commun., 22, 100722. https://doi.org/10.1016/j.mtcomm.2019.100722.
  41. Yan, L., Liu, C., Xia, J., Chao, M., Wang, W., Gu, J. and Chen, T. (2020), "CNTs/TiO2 composite membrane with adaptable wettability for on-demand oil/water separation", J. Clean. Prod., 275, 124011. https://doi.org/10.1016/j.jclepro.2020.124011.
  42. Ylmen, R. and Jaglid, U. (2013), "Carbonation of portland cement studied by diffuse reflection fourier transform infrared spectroscopy", Int. J. Concr. Struct. Mater., 7(2), 119-125. https://doi.org/10.1007/s40069-013-0039-y.
  43. Zhang, P., Su, J., Guo, J., Hu. S (2023), "Influence of carbon nanotube on properties of concrete: A review", Constr. Build. Mater., 369, 130388. https://doi.org/10.1016/j.conbuildmat.2023.130388.
  44. Zhuang, C. and Chen, Y. (2019), "The effect of nano-SiO2 on concrete properties: A review", Nanotechnol. Rev., 8(1), 562-572. https://doi.org/10.1515/ntrev-2019-0050.