References
- Akurathi, V.L. and Kolli, L.C. (2017), "Free vibration behavior of FG-CNT reinforced composite plates using higher order shear deformation theory", Int. J. Res. Appl. Sci. Eng. Technol., 5(11), 1408-1418. https://doi.org/10.22214/ijraset.2017.11204
- Almitani, K.H. (2019), "On forced and free vibrations of cutout squared beams", Steel Compos. Struct. 32(5), 643-655. https://doi.org/10.12989/scs.2019.32.5.643
- Ansari, R., Torabi, J. and Hassani, R. (2019), "Thermal buckling analysis of temperature-dependent FG-CNTRC quadrilateral plates", Comput. Math. Appl. 77(5), 1294-1311. https://doi.org/10.1016/j.camwa.2018.11.009
- Ansari, R., Faghih Shojaei, M., Mohammadi, V., Gholami, R. and Sadeghi, F. (2014), "Nonlinear forced vibration analysis of functionally graded carbon nanotube-reinforced composite Timoshenko beams", Compos. Struct., 113(1), 316-327. https://doi.org/10.1016/j.compstruct.2014.03.015
- Arvin, H. and Bakhtiari-Nejad, F. (2013a), "Nonlinear free vibration analysis of rotating composite Timoshenko beams", Compos. Struct., 96, 29-43. https://doi.org/10.1016/j.compstruct.2012.09.009
- Arvin, H. and Bakhtiari-Nejad, F. (2013b), "Nonlinear modal interaction in rotating composite Timoshenko beams", Compos. Struct., 96, 121-134. https://doi.org/10.1016/j.compstruct.2012.10.015
- Babamiri, B.B., Shahrjerdi, A. and Bayat, M. (2020), "Effect of geometrical imperfection on the thermomechanical behavior of functionally graded material rotating disk", J. Braz. Soc. Mech. Sci. Eng., 42, 271. https://doi.org/10.1007/s40430-020-02360-z
- Bhattacharya, S. and Das, D. (2019), "Free vibration analysis of bidirectional-functionally graded and double-tapered rotating micro-beam in thermal environment using modified couple stress theory", Compos. Struct. 215, 471-492. https://doi.org/10.1016/j.compstruct.2019.01.080
- Chung, J. and Yoo, H.H. (2002), "Dynamic analysis of a rotating cantilever beam by using the finite element method", J. Sound Vib., 249(1), 147-164. https://doi.org/10.1006/jsvi.2001.3856
- Demirsoy Karahan, E. and O zdemir, O . (2020), "Finite element formulation and free vibration analyses of rotating functionally graded blades", J. Theor. Appl. Mech., 59(1), 3-15. https://doi.org/10.1016/j.camwa.2018.11.009
- Di Sciuva, M. and Sorrenti, M. (2019), "Bending, free vibration and buckling of functionally graded carbon nanotube-reinforced sandwich plates, using the extended Refined Zigzag Theory", Compos. Struct., 227, 111324. https://doi.org/10.1016/j.compstruct.2019.111324
- Eltaher, M.A., Abdelrahman, A.A. and Esen, I. (2021), "Dynamic analysis of nanoscale Timoshenko CNTs based on doublet mechanics under moving load", Eur. Phys. J. Plus 123, 1-21. https://doi.org/10.1140/epjp/s13360-021-01682-8
- Eltaher, M.A. and Mohamed, S.A. (2020), "Buckling and stability analysis of sandwich beams subjected to varying axial loads", Steel Compos. Struct., 34(2), 241-260. https://doi.org/10.12989/scs.2020.34.2.241
- Fadelus, J.D., Wiesel, E., Gojny, F.H., Schulte, K. and Wagner, H.D. (2005), "Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites", Compos. Part A, 36, 1555-1561. https://doi.org/10.1016/j.compositesa.2005.02.006
- Feli, S., Karami, L. and Jafari, S.S. (2019), "Analytical modeling of low velocity impact on carbon nanotube-reinforced composite (CNTRC) plates", Mech. Adv. Mater. Struct. 26(5), 394-406. https://doi.org/10.1080/15376494.2017.1400613
- Fu, Y., Zhong, J., Shao, X. and Tao, C. (2016), "Analysis of nonlinear dynamic stability for carbon nanotube-reinforced composite plates resting on elastic foundations", Mech. Adv. Mater. Struct., 23(11), 1284-1289. https://doi.org/10.1080/15376494.2015.1068404
- Ghaffari, S.S., Ceballes, S. and Abdelkefi, A. (2020), "Nonlinear dynamical responses of forced carbon nanotube-based mass sensors under the influence of thermal loadings", Nonlinear Dyn 100, 1013-1035. https://doi.org/10.1007/s11071-020-05565-y
- Ghasemi, A.R. and Soleymani, M. (2021), "Effects of carbon nanotubes distribution on the buckling of carbon nanotubes/ fiber/polymer/metal hybrid laminates cylindrical shell", J. Sandw. Struct. Mater. 23(6), 2086-2105. https://doi.org/10.1177/1099636220909786
- Giannopoulos, G.I., Kakavas, P.A. and Anifantis, N.K. (2008), "Evaluation of the effective mechanical properties of single walled carbon nanotubes using a spring based finite element approach", Comput. Mater. Sci. 41(4), 561-569. https://doi.org/10.1016/j.commatsci.2007.05.016
- Han, Y. and Elliott, J. (2007), Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites. Comput. Mater. Sci. 39(2), 315-323. https://doi.org/10.1016/j.commatsci.2006.06.011
- Heidari, M. and Arvin, H. (2019), "Nonlinear free vibration analysis of functionally graded rotating composite Timoshenko beams reinforced by carbon nanotubes," J. Vib. Control 25(14), 2063-2078. https://doi.org/10.1177/1077546319847836
- Karamanli, A. and Vo, T.C. (2021), "Finite element model for carbon nanotube-reinforced and graphene nanoplatelet-reinforced composite beams", Compos. Struct. 264. https://doi.org/10.1016/j.compstruct.2021.113739
- Karami, B., Shahsavari, D. and Janghorban, M. (2018), "A comprehensive analytical study on functionally graded carbon nanotube-reinforced composite plates", Aerosp. Sci. Technol. 82-83, 499-512. https://doi.org/10.1016/j.ast.2018.10.001
- Khadir, A.I., Daikh, A.A. and Eltaher, M.A. (2021), "Novel four-unknowns quasi 3D theory for bending, buckling and free vibration of functionally graded carbon nanotubes reinforced composite laminated nanoplates", Adv. Nano Res., 11(6), 621-640. https://doi.org/10.12989/anr.2021.11.6.621
- Khosravi, S., Arvin, H. and Kiani, Y. (2019a), "Interactive thermal and inertial buckling of rotating temperature-dependent FGCNT reinforced composite beams", Compos. B. Eng. 175, 107178. https://doi.org/10.1016/j.compositesb.2019.107178
- Khosravi, S., Arvin, H. and Kiani, Y. (2019b), "Vibration analysis of rotating composite beams reinforced with carbon nanotubes in thermal environment", Int. J. Mech. Sci. 164, 105187. https://doi.org/10.1016/j.ijmecsci.2019.105187
- Kilic, B. and O zdemir, O . (2021), "Vibration and stability analyses of functionally graded beams", Arch. Mech. Eng. 68(1), 93-113. https://doi.org/10.24425/ame.2021.137043
- Kiani, Y. and Eslami, M.R. (2013), "An exact solution for thermal buckling of annular FGM plates on an elastic medium", Compos. B Eng., 45(1), 101-110. https://doi.org/10.1016/j.compositesb.2012.09.034
- Kollar, L.P. and Springer, G.S. (2003), Mechanics of Composite Structures, Cambridge University Press, U.K.
- Lin, B., Chen, B., Zhu, B., Li, J., and Li, Y. (2021), "Dynamic stability analysis for rotating pre-twisted FG-CNTRC beams with geometric imperfections restrained by an elastic root in thermal environment", Thin Wall. Struct., 164, 107902. https://doi.org/10.1016/j.tws.2021.107902
- Liu, Y., Wang, X., Liu, L., Wu, B. and Yang, Q. (2022), "On the forced vibration of high-order functionally graded nanotubes under the rotation via intelligent modeling", Adv. Nano Res. 13(1), 47-61. https://doi.org/10.12989/anr.2022.13.1.047
- Lu, X. and Hu, Z. (2012), "Mechanical property evaluation of single-walled carbon nanotubes by finite element modeling", Compos. B. Eng., 43(4), 1902-1913. https://doi.org/10.1016/j.compositesb.2012.02.002
- Mangalasseri, A.S., Mahesh, V., Mukunda, S., Mahesh, V., Ponnusami, S.A., Harursampath, D. and Tounsi, A. (2023), "Vibration based energy harvesting performance of magneto-electro-elastic beams reinforced with carbon nanotubes", Adv. Nano Res., 14(1), 27-43. https://doi.org/10.12989/anr.2023.14.1.027
- Mohamed, N., Mohamed, S.A. and Eltaher, M.A. (2020), "Buckling and post-buckling behaviors of higher order carbon nanotubes using energy-equivalent model", Eng. Comput., 37(4), 2823-2836. https://doi.org/10.1007/s00366-020-00976-2
- Na, K.S. and Kim, J.H. (2004), "Three-dimensional thermal buckling analysis of functionally graded materials" Compos. B: Eng., 35(5), 429-437. https://doi.org/10.1016/j.compositesb.2003.11.013
- Ozdemir, O. (2016), "Application of the differential transform method to the free vibration analysis of functionally graded Timoshenko beams", J. Theor. App. Mech. 54(4), 1205-1217. https://doi.org/10.15632/jtam-pl.54.4.1205
- Ozdemir Ozgumus, O. and Kaya, M.O. (2013), "Energy expressions and free vibration analysis of a rotating Timoshenko beam featuring bending-bending-torsion coupling", Arch. Appl. Mech., 83, 97-108. https://doi.org/10.1007/s00419-012-0634-4
- Peng, X.L. and Li, X.F. (2010), "Thermal stress in rotating functionally graded hollow circular disks", Compos. Struct., 92(8), 1896-1904. https://doi.org/10.1016/j.compstruct.2010.01.008
- Piovan, M.T. and Sampaio, R. (2009), "A study on the dynamics of rotating beams with functionally graded properties", J. Sound Vib., 327(1-2), 134-143. https://doi.org/10.1016/j.jsv.2009.06.015
- Rahmani, B. (2018), "Adaptive fuzzy sliding mode control for vibration suppression of a rotating carbon nanotube-reinforced composite beam", J. Vib. Control, 24(12), 2447-63. https://doi.org/10.1177/1077546316687937
- Rayleigh, J.W.S.B (1877), The Theory of Sound, Dover Publications, New York, U.S.A.
- Satankar, R.K., Sharma, N., Ramteke, P.M., Panda S.K. and Mahapatra, S.S. (2020), "Acoustic responses of natural fibre reinforced nanocomposite structure using multiphysics approach and experimental validation", Adv. Nano Res. 9(4), 263-276. https://doi.org/10.12989/anr.2020.9.4.263
- Shafiei, H. and Setoodeh, A.R. (2017), "Nonlinear free vibration and post-buckling of FG-CNTRC beams on nonlinear foundation", Steel Compos. Struct. 24(1), 65-77. https://doi.org/10.12989/scs.2017.24.1.065
- Shen, H.S.S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct. 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026
- Shen, H.S. and Xiang, Y. (2013), "Nonlinear analysis of nanotube-reinforced composite beams resting on elastic foundations in thermal environments", Eng. Struct., 56, 698-708. https://doi.org/10.1016/j.engstruct.2013.06.002
- Shen, H.S. and Zhang, C.L. (2010), "Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates", Mater. Des., 31(7), 3403-3411. https://doi.org/10.1016/j.matdes.2010.01.048
- Shen, Z., Xia, J. and Cheng, P. (2019), "Geometrically nonlinear dynamic analysis of FG-CNTRC plates subjected to blast loads using the weak form quadrature element method", Compos. Struct., 209, 775-788. https://doi.org/10.1016/j.compstruct.2018.11.009
- Sobhy, M. (2019), "Levy solution for bending response of FG carbon nanotube reinforced plates under uniform, linear, sinusoidal and exponential distributed loadings", Eng. Struct., 182, 198-212. https://doi.org/10.1016/j.engstruct.2018.12.071
- Tian, J., Zhang, Z. and Hua, H. (2019), "Free vibration analysis of rotating functionally graded double-tapered beam including porosities", Int. J. Mech. Sci. 150, 526-538. https://doi.org/10.1016/j.ijmecsci.2018.10.056
- Torabi, J., Ansari, R., and Hassani, R. (2019), "Numerical study on the thermal buckling analysis of CNT-reinforced composite plates with different shapes based on the higher-order shear deformation theory", Eur. J. Mech. A/Solids 73, 144-160. https://doi.org/10.1016/j.euromechsol.2018.07.009
- Van Do, V.N., Jeon, J.T.T. and Lee, C.H.H. (2020), "Dynamic analysis of carbon nanotube reinforced composite plates by using Bezier extraction based isogeometric finite element combined with higher-order shear deformation theory", Mech. Mater., 142, 103307. https://doi.org/10.1016/j.mechmat.2019.103307
- Vinyas, M. (2019), "A higher-order free vibration analysis of carbon nanotube-reinforced magneto-electro-elastic plates using finite element methods", Compos. B. Eng., 158, 286-301. https://doi.org/10.1016/j.compositesb.2018.09.086.
- Wahrhaftig, A., Brasil, R.M.L.R.F. and Balthazar, J.M. (2013), "The first frequency of cantilevered bars with geometric effect: A mathematical and experimental evaluation", J. Braz. Soc. Mech. Sci. Eng. 35, 457-467. https://doi.org/10.1007/s40430-013-0043-9
- Wahrhaftig, A. de M. and Magalhaes, K.M.M. (2021), "Bifurcation analysis of columns of composite materials with thermal variation", Mater. Res., 24. https://doi.org/10.1590/1980-5373-MR-2021-0266
- Wang, C.Y. and Zhang, L.C. (2008), "A critical assessment of the elastic properties and effective wall thickness of single-walled carbon nanotubes", Nanotechnology, 19(7), 75705. https://doi.org/10.1088/0957-4484/19/7/075705
- Wattanasakulpong, N. and Ungbhakorn, V. (2013), "Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation", Compos. Mater. Sci., 71, 201-208. https://doi.org/10.1016/j.commatsci.2013.01.028
- Wu, Z., Zhang, Y. and Yao, G. (2020), "3/2 superharmonic resonance and 1/2 subharmonic resonance of functionally graded carbon nanotube reinforced composite beams", Compos. Struct. 241, 112056. https://doi.org/10.1016/j.compstruct.2020.112056
- Wu, Z., Zhang, Y., Yao, G. and Yang, Z. (2019), "Nonlinear primary and super-harmonic resonances of functionally graded carbon nanotube reinforced composite beams", Int. J. Mech. Sci. 153-154, 321-340. https://doi.org/10.1016/j.ijmecsci.2019.06.039
- Wu, H.L, Yang, J. and Kitipornchaj, S. (2016) "Nonlinear vibration of functionally graded carbon nanotube reinforced composite beams with geometric imperfections", Compos. B Eng., 90, 86-96. https://doi.org/10.1016/j.compositesb.2015.12.007
- Wuite, J. and Adali, S. (2005), "Deflection and stress behaviour of nanocomposite reinforced beams using a multiscale analysis", Compos. Struct., 71, 388-396. https://doi.org/10.1016/j.compstruct.2005.09.011
- Yas, M.H. and Samadi, N. (2012), "Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation", Int. J. Press. Vessels Pip. 98, 119-128. https://doi.org/10.1016/j.ijpvp.2012.07.012
- Zhang, D.G. (2014) "Thermal post-buckling and nonlinear vibration analysis of FGM beams based on physical neutral surface and high order shear deformation theory", Meccanica, 49(2), 283-293. doi:10.1007/s11012-013-9793-9
- Zhang, L.W., Song, Z.G. and Liew, K.M. (2015), "State-space Levy method for vibration analysis of FG-CNT composite plates subjected to in-plane loads based on higher-order shear deformation theory", Compos. Struct., 134, 989-1003. https://doi.org/10.1016/j.compstruct.2015.08.138
- Zhou, T. and Song, Y. (2019), "Three-dimensional nonlinear bending analysis of FG-CNTs reinforced composite plates using the element-free Galerkin method based on the S-R decomposition theorem", Compos. Struct., 207, 519-530. https://doi.org/10.1016/j.compstruct.2018.09.026
- Zhu, P., Lei, Z.X. and Liew, K.M. (2012), "Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory, Compos. Struct., 94(4), 1450-1460. https://doi.org/10.1016/j.compstruct.2011.11.010