DOI QR코드

DOI QR Code

Analysis of Monoterpene Concentration Characteristics and Development of an Empirical Formula for Monoterpene in the Mixed Forest of the National Center for Forest Therapy

국립산림치유원 혼효림에서의 모노테르펜 농도 특성 분석 및 추정식 개발

  • Hyo-Jung Lee (Korea Forest Welfare Institute Forest Welfare Research Center) ;
  • Young-Hee Lee (Department of Atmospheric Sciences, Kyungpook National University)
  • 이효정 (한국산림복지진흥원 산림복지연구개발센터) ;
  • 이영희 (경북대학교 대기과학과)
  • Received : 2024.03.21
  • Accepted : 2024.05.04
  • Published : 2024.05.31

Abstract

We analyzed the observed characteristics of monoterpene and developed an empirical formula for monoterpene concentration in the pine-dominated mixed forest of the National Center for Forest Therapy. Monoterpene was measured at 0800, 1200 and 1700 LST once a month using sorbent tube sampling coupled with thermal desorption gas chromatography and mass spectrometry. Monoterpene concentration is low in winter and shows a maximum in June and July. The major components of monoterpene are alpha-pinene, camphene and beta-pinene. During the warm period from May to November, monoterpene concentration is higher at 0800 and 1700 LST than at 1200 LST. The empirical formula takes into account the vegetation variables, temperature-controlled emission, oxidation processes and dilution by wind. The vegetation variable accounts for the difference in observed monoterpene concentration between two sites. The observed monoterpene concentration normalized by the vegetation variable increases exponentially with air temperature. The oxidation process explains the lower monoterpene concentration at 1200 LST than at 0800 and 1700 LST during the warm period. The monoterpene estimates using the empirical formula shows a correlation of 0.52 with the observation for the development period (2018~2020), while it shows a correlation of 0.72 for the validation year (2021). Such higher correlation for the validation year than for the development period is due to the fact that variability of monoterpene concentration is better explained by air temperature in 2021 than in the development period. However, the developed formula underestimates the monoterpene concentration in May and June, showing the limitation in accurately capturing the monthly variation of monoterpene.

Keywords

Acknowledgement

우선 본 논문의 개선을 위해 좋은 의견을 제시해주신 두 분 심사위원께 감사드립니다. 본 연구는 산림청(한국임업진흥원) 산림과학 기술연구 개발사업(2021382B10-2221-0101)의 지원으로 수행되었습니다.

References

  1. Benjamin, M. T., and A. M. Winer, 1998: Estimating the ozone-forming potential of urban trees and shrubs. Atmos. Environ., 32, 53-68, doi:10.1016/S1352-2310(97)00176-3.
  2. Brune, W., and Coauthors, 2022: Observations of atmospheric oxidation and ozone production in South Korea. Atmos. Environ., 269, 118854, doi:10.1016/j.atmosenv.2021.118854.
  3. Caser, M., W. Chitarra, F. D'Angiolillo, I. Perrone, S. Demasi, C. Lovisolo, L. Pistelli, and V. Scariot, 2019: Drought stress adaptation modulates plant secondary metabolite production in Salvia dolomitica Codd. Ind. Crops Prod., 129, 85-96, doi:10.1016/j.indcrop.2018.11.068.
  4. Faiola, C. L., and Coauthors, 2019: Secondary organic aerosol formation from healthy and aphid-stressed scots pine emissions. ACS Earth Space Chem., 3, 1756-1772, doi:10.1021/acsearthspacechem.9b00118.
  5. Guenther, A. B., P. R. Zimmerman, P. C. Harley, R. K. Monson, and R. Fall, 1993: Isoprene and monoterpene emission rate variability: Model evaluations and sensitivity analyses. J. Geophys. Res., 98, 12609-12617, doi:10.1029/93JD00527.
  6. Guenther, A. B., 2002: The contribution of reactive carbon emissions from vegetation to the carbon balance of terrestrial ecosystems. Chemosphere, 49, 837-844, doi: 10.1016/S0045-6535(02)00384-3.
  7. Guenther, A. B., X. Jiang, C. L. Heald, T. Sakulyanontvittaya, T. Duhl, L. K. Emmons, and X. Wang, 2012: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geosci. Model. Dev., 5, 1471-1492, doi:10.5194/gmd5-1471-2012.
  8. Hakola, H., V. Tarvainen, T. Laurila, V. Hiltunen, H. Hellen, and P. Keronen, 2003: Seasonal variation of VOC concentrations above a boreal coniferous forest. Atmos. Environ., 37, 1623-1634, doi:10.1016/S1352-2310(03)00014-1.
  9. Hakola, H., V. Tarvainen, J. Back, H. Ranta, B. Bonn, J. Rinne, and M. Kulmala, 2006: Seasonal variation of mono- and sesquiterpene emission rates of Scots pine. Biogeosciences, 3, 93-101, doi:10.5194/bg-3-93-2006.
  10. Hakola, H., H. Hellen, M. Hemmila, J. Rinne, and M. Kulmala, 2012: In situ measurements of volatile organic compounds in a boreal forest. Atmos. Chem. Phys., 12, 11665-11678, doi:10.5194/acp-12-11665-2012.
  11. Jasoni, R., C. Kane, C. Green, E. Peffley, D. Tissue, L. Thompson, P. Payton, and P. W. Pare, 2004: Altered leaf and root emissions from onion (Allium cepa L.) grown under elevated CO2 conditions. Environ. Exp. Bot., 51, 273-280, doi:10.1016/j.envexpbot.2003.11.006.
  12. Ji, D. Y., S. Y. Kim, and J. S. Han, 2002: A study on the comparison to source profile of the major terpenes from pine tree and Korea pine tree. J. Korea Soc. Atmos. Environ., 18, 515-525.
  13. Jo, Y., S. Park, M. Jeong, J. Lee, R. Yoo, C. Kim, and S. Lee, 2018: Analysis of phytoncide concentration and micrometeorology factors by pinus koraiensis stand density. J. Environ. Health Sci., 44, 205-216, doi: 10.5668/JEHS.2018.44.3.205.
  14. Kim, I.-S., G.-Y. Oh, C. O. Park, K. S. Kim, S. Y. Lee, S. H. Yun, and H.-H. Lee, 2019: The distribution characteristics of phytoncide in Palyeongsan National Park of Goheung. J. Korean Sci. Environ. Tech., 20, 67-75, doi:10.26511/jkset.20.1.9.
  15. Kim, J.-C., K.-J. Kim, D.-S. Kim, and J.-S. Han, 2005: Seasonal variations of monoterpene emissions from coniferous trees of different ages in Korea. Chemosphere, 59, 1685-1696, doi:10.1016/j.chemosphere.2004.10.048.
  16. Kontkanen, J., P. Paasonene, J. Aalto, J. Back, P. Rantalt, T. Petaja, and M. Kulmala, 2016: Simple proxies for estimating the concentrations of monoterpenes and their oxidation products at a boreal forest site. Atmos. Chem. Phys., 16, 13291-13307, doi:10.5194/acp-16-13291-2016.
  17. Lappalainen, H. K., S. Sevanto, J. Back, T. M. Ruuskanen, P. Kolari, R. Taipale, J. Rinne, M. Kulmala, and P. Hari, 2009: Daytime concentrations of biogenic volatile organic compounds in a boreal forest canopy and their relation to environmental and biological factors. Atmos. Chem. Phys., 9, 5447-5459, doi:10.5194/acp9-5447-2009.
  18. Lee, S.-J., and Coauthors, 2021: Regression analysis-based model equation predicting the concentration of phytoncide (Monoterpenes) - Focusing on Suri Hill in Chuncheon -. J. Environ. Health Sci., 47, 548-557, doi:10.5668/JEHS.2021.47.6.548.
  19. Lee, S.-W., D.-G. Park, and K.-Y. Kim, 2012: Characteristics of phytoncide production at the recreation forest in the Chungbuk area. J. Environ. Impact Assess., 21, 279-287, doi:10.14249/eia.2012.21.2.279.
  20. Lee, Y.-K., J.-S. Woo, S.-R. Choi, and E.-S. Shin, 2015: Comparison of phytoncide (monoterpene) concentration by type of recreational Forest. J. Environ. Health Sci., 41, 241-248, doi:10.5668/JEHS.2015.41.4.241.
  21. Li, D., Y. Chen, Y. Shi, X. He, and X. Chen, 2009: Impact of elevated CO?2 and O3 concentrations on biogenic volatile organic compounds emissions from Ginkgo biloba. Bull. Environ. Contam. Toxicol., 82, 473-477, doi:10.1007/s00128-008-9590-7.
  22. Lopez-Serrano, F. R., T. Landete-Castillejos, J. Martinez-Millan, A. Cerro-Barja, 2000: LAI estimation of natural pine forest using a non-standard sampling tech-nique. Agric. Forest Meteor., 101, 95-111, doi:10.1016/S0168-1923(99)00171-9.
  23. Miyama, T., and Coauthors, 2020: Increase in biogenic volatile organic compund concentrations observed after rains at six forest sites in non-summer periods. Atmos., 11, 1381, doi:10.3390/atmos11121381.
  24. Mozaffar, A., and Coauthors, 2017: Biogenic volatile organic compound emissions from senescent maize leaves and a comparison with other leaf developmental stages. Atmos. Environ., 176, 71-81, doi:10.1016/j.atmosenv.2017.12.020.
  25. Nieminen, T., A. Asmi, M. D. Maso, P. P. Aalto, P. Keronen, T. Petaja, M. Kulmala, and V.-M. Kerminen, 2014: Trends in atmospheric new particle formation: 16 years of observations in boreal forest environment. Boreal Environ. Res., 19, 191-214, doi:10138/165199. 10138/165199
  26. Pietikainene, J.-P., S. Mikkonene, A. Hamed, A. I. Hienola, W. Birmili, M. Kulmala, and A. Laaksonene, 2014: Analysis of nucleation events in the European boundary layer using the regional aerosol-climate model REMO-HAM with a solar radiation-driven OH-proxy. Atmos. Chem. Phys., 14, 11711-11729, doi:10.5194/acp-14-11711-2014.
  27. Rantala, P., J. Aalto, R. Taipale, T. M. Ruuskanen, and J. Rinne, 2015: Annual cycle of volatile organic compound exchange between a boreal pine forest and the atmosphere. Biogeosciences, 12, 5753-5770, doi: 10.5194/bg-12-5753-2015.
  28. Ren, Q., M. Xie, Q. Zhang, G. Qi, and X. Liu, 2010: Effect on volatile compounds from damaged Eupatorium adenophorum by different temperature and light. J. Agric. Food Environ. Sci., 30, 3080-3086.
  29. Rinne, J., J. Back, and H. Hakola, 2009: Biogenic volatile organic compound emissions from the Eurasian taiga: current knowledge and future directions. Boreal Env. Res., 14, 807-826, doi:10.1016/j.apcata.2009.06.033.
  30. Son, Y.-S., K.-J. Kim, I.-H. Jung, S.-J. Lee, and J.-C. Kim, 2015: Seasonal variations and emission fluxes of monoterpene emitted from coniferous trees in East Asia: focused on Pinus rigida and Pinus koraiensis. J. Atmos. Chem., 72, 27-41, doi:10.1007/s10874-015-9303-7.
  31. Taipale, R., T. M. Ruuskanen, J. Rinne, M. K. Kajos, H. Hakola, T. Pohja, and M. Kulmala, 2008: Technical Note: Quantitative long-term measurements of VOC concentrations by PTR-MS - measurement, calibration, and volume mixing ratio calculation methods. Atmos. Chem. Phys., 8, 6681-6698, doi:10.5194/acp8-6681-2008.
  32. Tarvainen, V., H. Hakola, H. Hellen, J. Back, P. Hari, and M. Kulmala, 2005: Temperature and light dependence of the VOC emissions of Scots pine. Atmos. Chem. Phys., 5, 989-998, doi:10.5194/acp-5-989-2005.
  33. Ye, J., Y. Jiang, J. Veromann, and U. Niinemets, 2019: Petiole gall aphid (pemphigus spyrothecae) infestation of Populus × petrovskiana leaves alters foliage photosynthetic characteristics and leads to enhanced emissions of both constitutive and stress-induced volatiles. Trees, 33, 37-51, doi:10.1007/s00468-018-1756-2.