DOI QR코드

DOI QR Code

Yield monitoring systems for non-grain crops: A review

  • Md Sazzadul Kabir (Department of Smart Agricultural Systems, Graduate School, Chungnam National University) ;
  • Md Ashrafuzzaman Gulandaz (Department of Smart Agricultural Systems, Graduate School, Chungnam National University) ;
  • Mohammod Ali (Department of Agricultural Machinery Engineering, Graduate School, Chungnam National University) ;
  • Md Nasim Reza (Department of Smart Agricultural Systems, Graduate School, Chungnam National University) ;
  • Md Shaha Nur Kabir (Department of Agricultural and Industrial Engineering, Faculty of Engineering, Hajee Mohammad Danesh Science and Technology University) ;
  • Sun-Ok Chung (Department of Smart Agricultural Systems, Graduate School, Chungnam National University) ;
  • Kwangmin Han (Hyundai Agricultural Machinery)
  • Received : 2023.10.11
  • Accepted : 2023.12.19
  • Published : 2024.03.01

Abstract

Yield monitoring systems have become integral to precision agriculture, providing insights into the spatial variability of crop yield and playing an important role in modern harvesting technology. This paper aims to review current research trends in yield monitoring systems, specifically designed for non-grain crops, including cabbages, radishes, potatoes, and tomatoes. A systematic literature survey was conducted to evaluate the performance of various monitoring methods for non-grain crop yields. This study also assesses both mass- and volume-based yield monitoring systems to provide precise evaluations of agricultural productivity. Integrating load cell technology enables precise mass flow rate measurements and cumulative weighing, offering an accurate representation of crop yields, and the incorporation of image-based analysis enhances the overall system accuracy by facilitating volumetric flow rate calculations and refined volume estimations. Mass flow methods, including weighing, force impact, and radiometric approaches, have demonstrated impressive results, with some measurement error levels below 5%. Volume flow methods, including paddle wheel and optical methodologies, yielded error levels below 3%. Signal processing and correction measures also play a crucial role in achieving accurate yield estimations. Moreover, the selection of sensing approach, sensor layout, and mounting significantly influence the performance of monitoring systems for specific crops.

Keywords

Acknowledgement

This research was supported by Cluster Project through the Korea Industrial Complex Corporation (KICOX) grant funded by Ministry of Trade, Industry and Energy (MOTIE) of Korea (No. IRJB2208).

References

  1. Abidine A, Upadhyaya SK, Leal J. 2003. Development of an electronic weigh bucket. p. 031043. In Proceeding of ASABE Annual International Meeting.
  2. Annamalai P, Lee WS, Burks TF. 2004. Color vision system for estimating citrus yield in real-time. p. 043054. In Proceeding of ASABE Annual International Meeting.
  3. Bae YH, Searcy SW, Schueller JK, Stout BA. 1987. Determination of spatially variable yield maps. p. 871533. In Proceeding of ASABE Annual International Meeting.
  4. Behme JA, Schinstock TL, Bashford LL, Leviticus LI. 1997. Site-specific yield for forages. p. 971054. In Proceeding of ASABE Annual International Meeting.
  5. Benjamin CE, Mailander MP, Price RR. 2001. Sugar cane yield monitoring system. p. 011189. In Proceeding of ASABE Annual International Meeting.
  6. Bhatt R, Singh P, Hossain A, Timsina J. 2021. Rice-wheat system in the northwest Indo-Gangetic plains of South Asia: Issues and technological interventions for increasing productivity and sustainability. Paddy and Water Environment 19:345-365. https://doi.org/10.1007/s10333-021-00846-7
  7. Blackmore BS, Marshall CJ. 1996. Yield mapping errors and algorithms. pp. 403-415. In Proceedings of the Third International Conference on Precision Agriculture.
  8. Bora GC, Ehsani R, Lee KH, Lee WS. 2006. Development of a test rig for evaluating a yield monitoring system for citrus mechanical harvesters. pp. 84-88. In Proceedings of 4th World Congress Conference on Computers in Agriculture and Natural Resources.
  9. Boydell B, Vellidis G, Perry CD, Thomas DL, Durrence JS, Vervoort RW. 1999. Deconvolution of site-specific yield measurements to address peanut combine dynamics. Transactions of the ASAE 42:1859-1866. https://doi.org/10.13031/2013.13351
  10. Cerri DG, Upadhyaya SK, Leal J. 2004. Development of an electronic weigh bucket. p. 041097. In Proceeding of ASABE Annual International Meeting.
  11. Cerri DGP, Magalhaes PG. 2005. Sugar cane yield monitor. p. 051154. In Proceeding of ASABE Annual International Meeting.
  12. Cundiff JS, Sharobeem Y. 2003. Development of yield monitor. p. 031036. In Proceeding of ASABE Annual International Meeting.
  13. Dalponte M, Bruzzone L, Gianelle D. 2012. Tree species classification in the Southern Alps based on the fusion of very high geometrical resolution multispectral/hyperspectral images and LiDAR data. Remote Sensing of Environment 123:258-270. https://doi.org/10.1016/j.rse.2012.03.013
  14. de Camargo ET, Spanhol FA, Slongo JS, da Silva MVR, Pazinato J, de Lima Lobo AV, Coutinho FR, Pfrimer FWD, Lindino CA, Oyamada MS, et al. 2023. Low-cost water quality sensors for IoT: A systematic review. Sensors 23:4424.
  15. Demmel M. 2013. Site-specific recording of yields. In Precision in Crop Farming. Springer, Dordrecht, Netherlands.
  16. Durrence JS, Hamrita TK, Vellidis G. 1999. A load cell based yield monitor for peanut feasibility study. Precision Agriculture 1:301-317.
  17. Ehsani MR, Grift TE, Maja JM, Zhong D. 2009. Two fruit counting techniques for citrus mechanical harvesting machinery. Computers and Electronics in Agriculture 65:186-191. https://doi.org/10.1016/j.compag.2008.09.002
  18. Ehsani R, Karimi D. 2010. Yield monitors for specialty crops. Landbauforschung Volkenrode, Special Issue 340:31-43.
  19. Gogineni S, White JG, Thomasson JA, Thompson PG, Wooten JR, Shankle M. 2002. Image-based sweet potato yield and grade monitor. p. 021169. In Proceeding of ASABE Annual International Meeting.
  20. Heidman BC, Rosa UA, Upadhyaya SK. 2003. Development of a pistachio yield monitoring system. p. 031040. In Proceeding of ASABE Annual International Meeting.
  21. Heremans S, Dong Q, Zhang B, Bydekerke L, Van Orshoven J. 2015. Potential of ensemble tree methods for early-season prediction of winter wheat yield from short time series of remotely sensed normalized difference vegetation index and in situ meteorological data. Journal of Applied Remote Sensing 9:097095.
  22. Jin X, Kumar L, Li Z, Xu X, Yang G, Wang J. 2016. Estimation of winter wheat biomass and yield by combining the AquaCrop model and field hyperspectral data. Remote Sensing 8:972.
  23. Karunathilake EMBM, Le AT, Heo S, Chung YS, Mansoor S. 2023. The path to smart farming: Innovations and opportunities in precision agriculture. Agriculture 13:1593.
  24. Kaul M, Hill RL, Walthall C. 2005. Artificial neural networks for corn and soybean yield prediction. Agriculture Systems 85:1-18. https://doi.org/10.1016/j.agsy.2004.07.009
  25. Kaur D, Uslu S, Rittichier K, Durresi A. 2023. Trustworthy artificial intelligence: A review. ACM Computing Surveys 55:39.
  26. Konstantinovic M, Wockel S, Lammers PS, Sachs J. 2008. UWB radar system for yield monitoring of sugar beet. Transactions of the ASABE 51:753-761. https://doi.org/10.13031/2013.24372
  27. Kumar S, Meena RS, Sheoran S, Jangir CK, Jhariya MK, Banerjee A, Raj A. 2022. Remote sensing for agriculture and resource management. pp. 91-135. In Natural Resources Conservation and Advances for Sustainability.
  28. Lamb DW, Brown RR. 2001. PA-precision agriculture: Remote-sensing and mapping of weeds in crops. Journal of Agricultural Engineering Research 78:117-125. https://doi.org/10.1006/jaer.2000.0630
  29. Lee YJ, Kim KD, Lee HS, Shin BS. 2018. Vision based potato detection and counting system for yield monitoring. Journal of Biosystems Engineering 43:103-109. https://doi.org/10.5307/JBE.2018.43.2.103
  30. Li Z, Wang J, Tang H, Huang C, Yang F, Chen B, Wang X, Xin X, Ge Y. 2016. Predicting grassland leaf area index in the meadow steppes of northern China: A comparative study of regression approaches and hybrid geostatistical methods. Remote Sensing 8:632.
  31. Liang L, Di L, Zhang L, Deng M, Qin Z, Zhao S, Lin H. 2015. Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method. Remote Sensing Environment 165:123-134. https://doi.org/10.1016/j.rse.2015.04.032
  32. Magalhaes PSG, Cerri DGP. 2007. Yield monitoring of sugar cane. Biosystems Engineering 96:1-6. https://doi.org/10.1016/j.biosystemseng.2006.10.002
  33. Magney TS, Eitel JUH, Vierling LA. 2017. Mapping wheat nitrogen uptake from RapidEye vegetation indices. Precision Agriculture 18:429-451.
  34. Menegatti E, Maeda T, Ishiguro H. 2004. Image-based memory for robot navigation using properties of omnidirectional images. Robotics and Autonomous Systems 47:251-267. https://doi.org/10.1016/j.robot.2004.03.014
  35. Molin JP, Menegatti LAA. 2004. Field-testing of a sugar cane yield monitor in Brazil. Paper number:041099. In 2004 ASAE/CSAE Annual International Meeting. American Society of Agricultural and Biological Engineers/Canadian Society for Engineering in Agricultural, Food, and Biological Systems.
  36. Mueller SM, Vyn TJ. 2018. Physiological constraints to realizing maize grain yield recovery with silking-stage nitrogen fertilizer applications. Field Crops Research 228:102-109. https://doi.org/10.1016/j.fcr.2018.08.025
  37. Pantazi XE, Moshou D, Alexandridis T, Whetton RL, Mouazen AM. 2016. Wheat yield prediction using machine learning and advanced sensing techniques. Computers and Electronics in Agriculture 121:57-65. https://doi.org/10.1016/j.compag.2015.11.018
  38. Pathak H, Aggarwal PK, Singh SD. 2012. Climate change impact, adaptation and mitigation in agriculture: Methodology for assessment and applications. Indian Agricultural Research Institute, New Delhi, India.
  39. Pelletier G, Upadhyaya SK. 1999. Development of a tomato load/yield monitor. Computers and Electronics in Agriculture 23:103-117. https://doi.org/10.1016/S0168-1699(99)00025-3
  40. Persson DA, Eklundh L, Algerbo PA. 2004. Evaluation of an optical sensor for tuber yield monitoring. Transactions of the ASABE 47:1851-1856. https://doi.org/10.13031/2013.17602
  41. Price RR, Larsen J, Peters A. 2007. Development of an optical yield monitor for sugar cane harvesting. p. 071049. In Proceeding of ASABE Annual International Meeting.
  42. Rains GC, Thomas DL, Perry CD. 2002. Pecan mechanical harvesting parameters for yield monitoring. Transactions of the ASAE 45:281-285.
  43. Rasmussen TJ, Lee CJ, Ziegler AC. 2008. Estimation of constituent concentrations, loads, and yields in streams of Johnson County, Northeast Kansas, using continuous water-quality monitoring and regression models, October 2002 through December 2006. In U.S. Geological Survey Scientific Investigations Report 2008-5014. US Department of the Interior, US Geological Survey, Virginia, USA.
  44. Reitz P, Kutzbach HD. 1996. Investigations on a particular yield mapping system for combine harvesters. Computers and Electronics in Agriculture 14:137-150. https://doi.org/10.1016/0168-1699(95)00044-5
  45. Reyns P, Missotten B, Ramon H, De Baerdemaeker J. 2002. A review of combine sensors for precision farming. Precision Agriculture 3:169-182. https://doi.org/10.1023/A:1013823603735
  46. Rivera G, Porras R, Florencia R, Sanchez-Solis JP. 2023. LiDAR applications in precision agriculture for cultivating crops: A review of recent advances. Computers and Electronics in Agriculture 207:107737.
  47. Rosa UA, Upadhyaya SK, Josiah M, Koller M, Mattson M, Pelletier MG. 2000. Analysis of a tomato yield monitor. Transactions of the ASAE 43:1331-1339. https://doi.org/10.13031/2013.3030
  48. Searcy SW, Schueller JK, Bae YH, Borgelt SC, Stout BA. 1989. Mapping of spatially variable yield during grain combining. Transactions of the ASAE 32:826-829. https://doi.org/10.13031/2013.31077
  49. Senthil S, Kadota B, Truong P, Near J. 2023. Retrospective frequency drift correction of rosette MRSI data using spectral registration. Magnetic Resonance in Medicine 90:1271-1281. https://doi.org/10.1002/mrm.29760
  50. Srinivasan A. 1999. Precision farming in Asia: Progress and prospects. pp. 623-627. In Proceedings of the Fourth International Conference on Precision Agriculture.
  51. Stas M, Van Orshoven J, Dong Q, Heremans S, Zhang B. 2016. A comparison of machine learning algorithms for regional wheat yield prediction using NDVI time series of SPOT-VGT. pp. 1-5. In Proceeding of 2016 Fifth International Conference on Agro-Geoinformatics.
  52. Sudduth KA. 1998. Engineering for precision agriculture-past accomplishments and future directions. SAE Technical Paper 1998:982040.
  53. Thomas DL, Perry CD, Vellidis G, Durrence JS, Kutz LJ, Kvien CK, Boydell B, Hamrita TK. 1999. Development and implementation of a load cell yield monitor for peanut. Applied Engineering in Agriculture 15:211-216. https://doi.org/10.13031/2013.5767
  54. Thomasson JA, Sui R, Wright GC, Robson AJ. 2006. Optical peanut yield monitor: Development and testing. Applied Engineering in Agriculture 22:809-818.
  55. Tumbo SD, Whitney JD, Miller WM, Wheaton TA. 2002. Development and testing of a citrus yield monitor. Applied Engineering in Agriculture 18:399-403.
  56. Upadhyaya SK, Shafii MS, Garciano LO. 2006. Development of an impact type electronic weighing system for processing tomatoes. p. 061190. In Proceeding of ASABE Annual International Meeting.
  57. Vellidis G, Perry CD, Durrence JS, Thomas DL, Hill RW, Kvien CK, Hamrita TK, Rains G. 2001. The peanut yield monitoring system. Transactions of the ASAE 44:775-785.
  58. Wang YH, Su WH. 2022. Convolutional neural networks in computer vision for grain crop phenotyping: A review. Agronomy 12:2659.
  59. Whelan B, Taylor J. 2013. Precision agriculture for grain production systems. CSIRO publishing, Clayton, Australia.
  60. Wild K, Auernhammer H. 1999. A weighing system for local yield monitoring of forage crops in round balers. Computers and Electronics in Agriculture 23:119-132. https://doi.org/10.1016/S0168-1699(99)00026-5
  61. Wu Q, Jin Y, Bao Y, Hai Q, Yan R, Chen B, Zhang H, Zhang B, Li Z, Li X, et al. 2015. Comparison of two inversion methods for leaf area index using HJ-1 satellite data in a temperate meadow steppe. International Journal of Remote Sensing 36:5192-5207.
  62. Xue J, Su B. 2017. Significant remote sensing vegetation indices: A review of developments and applications. Journal of Sensors 2017:1353691.
  63. Ye X, Sakai K, Okamoto H, Garciano LO. 2008. A ground-based hyperspectral imaging system for characterizing vegetation spectral features. Computers and Electronics in Agriculture 63:13-21. https://doi.org/10.1016/j.compag.2008.01.011
  64. Zaman QU, Schumann AW, Hostler HK. 2006. Estimation of citrus fruit yield using ultrasonically-sensed tree size. Applied Engineering in Agriculture 22:39-44. https://doi.org/10.13031/2013.20186
  65. Zhi J, Cao X, Liu W, Sun Y, Xu D, Da C, Jin L, Wang J, Zheng Z, Lai S, et al. 2023. Remote sensing monitoring and spatial pattern analysis of non-grain production of cultivated land in Anhui Province, China. Land 12:1497.