DOI QR코드

DOI QR Code

Low-noise fast-response readout circuit to improve coincidence time resolution

  • Jiwoong Jung (Department of Electronic Engineering, Sogang University) ;
  • Yong Choi (Department of Electronic Engineering, Sogang University) ;
  • Seunghun Back (Department of Electronic Engineering, Sogang University) ;
  • Jin Ho Jung (Department of Electronic Engineering, Sogang University) ;
  • Sangwon Lee (Department of Electronic Engineering, Sogang University) ;
  • Yeonkyeong Kim (Department of Electronic Engineering, Sogang University)
  • Received : 2023.04.11
  • Accepted : 2023.12.01
  • Published : 2024.04.25

Abstract

Time-of-flight (TOF) PET detectors with fast-rise-time scintillators and fast-single photon time resolution silicon photomultiplier (SiPM) have been developed to improve the coincidence timing resolution (CTR) to sub-100 ps. The CTR can be further improved with an optimal bandwidth and minimized electronic noise in the readout circuit and this helps reduce the distortion of the fast signals generated from the TOF-PET detector. The purpose of this study was to develop an ultra-high frequency and fully-differential (UF-FD) readout circuit that minimizes distortion in the fast signals produced using TOF-PET detectors, and suppresses the impact of the electronic noise generated from the detector and front-end readout circuits. The proposed UF-FD readout circuit is composed of two differential amplifiers (time) and a current feedback operational amplifier (energy). The ultra-high frequency differential (7 GHz) amplifiers can reduce the common ground noise in the fully-differential mode and minimize the distortion in the fast signal. The CTR and energy resolution were measured to evaluate the performance of the UF-FD readout circuit. These results were compared with those obtained from a high-frequency and single ended readout circuit. The experiment results indicated that the UF-FD readout circuit proposed in this study could substantially improve the best achievable CTR of TOF-PET detectors.

Keywords

Acknowledgement

This research was supported by the Korea Medical Device Development Fund grant funded by the Korea government (the Ministry of Science and ICT, the Ministry of Trade, Industry and Energy, the Ministry of Health & Welfare, the Ministry of Food and Drug Safety) (No. RS-2020-KD000006/1711137869 and RS-2020-KD000017/1711137911) and by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2022R1I1A1A01064428).

References

  1. M. Conti, Focus on time-of-flight PET: the benefits of improved time resolution, Eur. J. Nucl. Med. Mol. Imag. 38 (6) (2011) 1147-1157. https://doi.org/10.1007/s00259-010-1711-y
  2. W.W. Moses, Time of flight in PET revisited, IEEE Trans. Nucl. Sci. 50 (5) (2003) 1325-1330. https://doi.org/10.1109/TNS.2003.817319
  3. D.J. Kadrmas, M.E. Casey, M. Conti, B.W. Jakoby, C. Lois, D.W. Townsend, Impact of time-of-flight on PET tumor detection, J. Nucl. Med. 50 (8) (2009) 1315-1323. https://doi.org/10.2967/jnumed.109.063016
  4. S. Surti, S. Karp, L.M. Popescu, E. Daube-Witherspoon, M. Werner, Investigation of time-of-flight benefit for fully 3-DPET, IEEE Trans. Med. Imag. 25 (5) (2006) 529-538. https://doi.org/10.1109/TMI.2006.871419
  5. P. Lecoq, Pushing the limits in time-of-flight PET imaging, IEEE Trans. Radiat. Plasma Med. Sci. 1 (6) (2017) 473-485. https://doi.org/10.1109/TRPMS.2017.2756674
  6. S. Vandenberghe, E. Mikhaylova, E. D'Hoe, P. Mollet, J.S. Karp, Recent developments in time-of-flight PET, EJNMMI Phys. 3 (2016) 3.
  7. K. Park, J. Jung, Y. Choi, H. Leem, Y. Kim, Feasibility study of a time-of-flight brain position emission tomography employing individual channel readout electronics, Sensors 21 (2021) 5566.
  8. B.W. Jakoby, Y. Bercier, M. Conti, M.E. Casey, B. Bendriem, D.W. Townsend, Physical and clinical performance of the mCT time-of-flight PET/CT scanner, Phys. Med. Biol. 56 (2011) 2375-2389. https://doi.org/10.1088/0031-9155/56/8/004
  9. M. Miller, J. Zhang, K. Binzel, J. Griesmer, T. Laurence, M. Narayanan, D. Natarajamani, S. Wang, M. Knopp, Characterization of the Vereos digital photon counting PET system, J. Nucl. Med. 56 (2015) 434.
  10. A.M. Grant, T.W. Deller, M.M. Khalighi, S.H. Maramraju, G. Delso, C.S. Levin, NEMA NU 2-2012 performance studies for the SiPM based TOF-PET component of the GE Signa PET/MR system, J. Med. Phys. 43 (2016) 2334-2343. https://doi.org/10.1118/1.4945416
  11. D.F.C. Hsu, E. Ilan, W.T. Peterson, J. Uribe, M. Lubberink, C.S. Levin, Studies of next-generation silicon photomultiplier-based time-of-flight PET/CT system, J. Nucl. Med. 58 (2017) 1511-1518. https://doi.org/10.2967/jnumed.117.189514
  12. V.S. Joyce, D.J. Johan, S. Jenny, N. Walter, V.S. Paul, D. Rudi, B. Ronald, W. Antoon, B. Ronald, Performance characteristics of the digital biograph vision PET/CT system, J. Nucl. Med. 60 (7) (2019) 1031-1036. https://doi.org/10.2967/jnumed.118.215418
  13. P. Lecoq, C. Morel, J.O. Prior, D. Visvikis, S. Gundacker, E. Auffray, P. Krizan, R. M. Turtos, D. Thers, E. Charbon, J. Varela, C.d.L. Taille, A. Rivetti, D. Breton, J. Pratte, J. Nuyts, S. Surti, S. Vandenberghe, P. Marsden, K. Parodi, J.M. Benlloch, M. Benoit, Roadmap toward the 10 ps time-of-flight PET challenge, Phys. Med. Biol. 65 (2020) 21RM01.
  14. S. Gundacker, F. Acerbi, E. Auffray, A. Ferri, A. Gola, M.V. Nemallapudi, G. Paternoster, C. Piemonte, P. Lecoq, State of the art timing in TOF-PET detectors with LuAG, GAGG, and L(Y)SO scintillators of various sizes coupled to FBK-SiPMs, J. Instrum. 11 (2016), P08008.
  15. S. Gundacker, E. Auffray, B. Frisch, P. Jarron, A. Knaptisch A, T. Meyer, M. Pizzichemi, P. Lecoq, Time of flight positron emission tomography towards 100 ps resolution with L(Y)SO: an experimental and theoretical analysis, J. Instrum. 8 (2013), P07014.
  16. S. Gundacker, E. Auffray, K. Pauwels, P. Lecoq, Measurement of intrinsic rise times for various L(Y)SO and LuAG scintillators with a general study of prompt photons to achieve 10 ps in TOF-PET, Phys. Med. Biol. 61 (2016) 2802-2837. https://doi.org/10.1088/0031-9155/61/7/2802
  17. E. Venialgo, N. Lusardi, F. Garzetti, A. Geraci, S.E. Brunner, D.R. Schaart, Toward a full-flexible and fast-prototyping TOF-PET block detector based on TDC-on-FPGA, IEEE Trans. Radiat. Plasma Med. Sci. 3 (2019) 538-548. https://doi.org/10.1109/TRPMS.2018.2874358
  18. M. Krake, V. Nadig, V. Schulz, S. Gundacker, Power-efficient high-frequency readout concepts of SiPMs for TOF-PET and HEP, Nucl. Instrum. Methods Phys. Res. A Accelators Spectrometer Detect. Assoc. Equip. 1039 (2022), 167032.
  19. J. Jung, Y. Choi, K.B. Kim, S. Lee, H.J. Choe, An improved time over threshold method using bipolar signals, Phys. Med. Biol. 63 (2018), 135002.
  20. J. Jung, Y. Choi, K. Park, Y. Kim, J.H. Jung, A diode-based symmetric charge division circuit with grounding path to reduce signal crosstalk and improve detector performance, IEEE Trans. Radiat. Plasma Sci. 6 (2022) 788-793. https://doi.org/10.1109/TRPMS.2021.3112184
  21. M. Nemallapudi, S. Gundacker, P. Lecoq, E. Auffray, Single photon time resolution of state of the art SiPMs, J. Instrum. 11 (2016), P10016.
  22. J.W. Cates, S. Gundacker, E. Auffray, P. Lecoq, C.S. Levin, Improved single photon time resolution for analog SiPMs with front end readout that reduces influence of electronic noise, Phys. Med. Biol. 63 (2018), 185022.
  23. J.W. Cates, C.S. Levin, Advances in coincidence time resolution for PET, Phys. Med. Biol. 61 (2016) 2255-2265. https://doi.org/10.1088/0031-9155/61/6/2255
  24. S. Gundacker, E. Auffray, K. Pauwels, P. Lecoq, Measurement of intrinsic rise times for various L(Y)SO and LuAG scintillators with a general study of prompt photons to achieve 10 ps in TOF-PET, Phys. Med. Biol. 61 (2016) 2802-2837. https://doi.org/10.1088/0031-9155/61/7/2802
  25. P. Lecoq, Pushing the limits in time-of-flight PET imaging, IEEE Trans. Radiat. Plasma Sci. 1 (2017) 473-485. https://doi.org/10.1109/TRPMS.2017.2756674
  26. J.W. Cates, C.S. Levin, Evaluation of a clinical TOF-PET detector design that achieves 100 ps coincidence time resolution, Phys. Med. Biol. 63 (2018), 115011.
  27. S. Gundacker, R.M. Turtos, E. Auffray, M. Paganoni, P. Lecoq, High-frequency SiPM readout advances measured coincidence time resolution limits in TOF-PET, Phys. Med. Biol. 64 (2019), 055012.
  28. J.W. Cates, W. Choong, Low power implementation of high frequency SiPM readout for Cherenkov and scintillation detectors in TOF-PET, Phys. Med. Biol. 67 (2022), 195009.
  29. R. Ota, K. Nakajima, I. Ogawa, Y. Tamagawa, S.I. Kwon, E. Berg, S.R. Cherry, H. Shimoi, Y. Hasegawa, H. Nishizawa, Lead-free MCP to improve coincidence time resolution and reduce MCP direct interactions, Phys. Med. Biol. 66 (2021), 064006.
  30. P. Lecoq, G. Konstantinou, R. Latella, L. Moliner, J. Nuyts, L. Zhang, J. Barrio, J. M. Benlloch, A.J. Gonzalez Metascintillators, New results for TOF-PET applications, IEEE Trans. Radiat. Plasma Sci. 6 (2022) 510-516. https://doi.org/10.1109/TRPMS.2022.3161473