DOI QR코드

DOI QR Code

A unique Vietnam's red clay-based brick reinforced with metallic wastes for γ-ray shielding purposes: Fabrication, characterization, and γ-ray attenuation properties

  • Ta Van Thuong (Ural Federal University) ;
  • O.L. Tashlykov (Ural Federal University) ;
  • K.A. Mahmoud (Ural Federal University)
  • 투고 : 2023.12.14
  • 심사 : 2024.02.03
  • 발행 : 2024.04.25

초록

A unique brick series based on Vietnamese clay was manufactured at 114.22 MPa pressure rate for γ-ray attenuation purposes, consisting of (x) metallic waste & (90%-x) red clay mineral & 10% (hardener mixed with epoxy resin), where (x) is equal to the values 0%, 20%, 40%, 50%, and 70%. The impacts of industrial metal waste ratio in the structure and radiation protective characteristics were evaluated experimentally. The increase in metallic waste doping concentrations from 0% to 70% was associated with an increase in the manufactured brick's density (ρ) from 2.103 to 2.256 g/cm3 while the fabricated samples' porosity (Φ) decreased from 11.7 to 1.0%, respectively. Together with a rise in fabricated brick's density and a decrease in their porosities, the manufactured bricks' γ-ray attenuation capacities improved. The measured linear attenuation coefficient (μ, cm-1) was improved by 30.8%, 22.1%, 21.6%, and 19.7%, at Eγ equal to the values respectively 0.662, 1.173, 1.252, and 1.332 MeV, when the metallic waste concentration increased from 0% to 70%, respectively. The study demonstrates that manufactured bricks exhibit superior radiation shielding properties, with radiation protection efficiencies of 88.4%, 90.0%, 91.7%, 92.1%, and 92.4% for bricks with industrial metal waste contents of 0%, 20%, 40%, 50%, and 70%, respectively, at γ-ray energy (Eγ) of 1.332 MeV.

키워드

참고문헌

  1. W. Du, L. Zhang, X. Li, G. Ling, P. Zhang, Nuclear targeting Subcellular-delivery nanosystems for precise cancer treatment, Int. J. Pharm. 619 (2022) 121735, https://doi.org/10.1016/j.ijpharm.2022.121735. 
  2. S. Tanaka, M. Hosokawa, A. Tatsumi, S. Asaumi, R. Imai, K. Ogawara, Improvement of resistance to oxaliplatin by vorinostat in human colorectal cancer cells through inhibition of Nrf2 nuclear translocation, Biochem. Biophys. Res. Commun. 607 (2022) 9-14, https://doi.org/10.1016/j.bbrc.2022.03.070. 
  3. H.M.O. Parker, M.J. Joyce, The use of ionising radiation to image nuclear fuel: a review, Prog. Nucl. Energy 85 (2015) 297-318, https://doi.org/10.1016/j.pnucene.2015.06.006. 
  4. M.F. Marcone, S. Wang, W. Albabish, S. Nie, D. Somnarain, A. Hill, Diverse food-based applications of nuclear magnetic resonance (NMR) technology, Food Res. Int. 51 (2013) 729-747, https://doi.org/10.1016/j.foodres.2012.12.046. 
  5. O. Desouky, N. Ding, G. Zhou, Targeted and non-targeted effects of ionizing radiation, J Radiat Res Appl Sci 8 (2015) 247-254, https://doi.org/10.1016/j.jrras.2015.03.003. 
  6. M. Sadiq, F. Wen, A.A. Dagestani, Environmental footprint impacts of nuclear energy consumption: the role of environmental technology and globalization in ten largest ecological footprint countries, Nucl. Eng. Technol. 54 (2022) 3672-3681, https://doi.org/10.1016/j.net.2022.05.016. 
  7. O.L. Tashlykov, A.M. Grigoryev, Y.A. Kropachev, Reducing the exposure dose by optimizing the route of personnel movement when visiting specified points and taking into account the avoidance of obstacles, Energies 15 (2022) 8222, https://doi.org/10.3390/en15218222. 
  8. A.F. Mikhailova, O.L. Tashlykov, The ways of implementation of the optimization principle in the personnel radiological protection, Phys. Atom. Nucl. 83 (2020) 1718-1726, https://doi.org/10.1134/S1063778820100154. 
  9. ICRP, The 2007 recommendations of the international commission on radiological protection, ICRP publication 103, Ann. ICRP 37 (2-4) (2007). 
  10. IAEA, Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards, 2014. No. GSR Part 3, Vienna. 
  11. O.L. Tashlykov, A.N. Sesekin, A.G. Chentsov, A.A. Chentsov, Development of methods for route optimization of work in inhomogeneous radiation fields to minimize the dose load of personnel, Energies 15 (2022) 4788, https://doi.org/10.3390/en15134788.
  12. Y.A. Kropachev, O.L. Tashlykov, S.E. Shcheklein, Optimization of radiation protection at the NPP unit decommissioning stage, Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika 2019 (2019) 119-130, https://doi.org/10.26583/npe.2019.1.11. 
  13. Yu V. Nosov, A.V. Rovneiko, O.L. Tashlykov, S.E. Shcheklein, Decommissioning features of BN-350, -600 fast reactors, Atom. Energy 125 (2019) 219-223, https://doi.org/10.1007/s10512-019-00470-z. 
  14. O.L. Tashlykov, S.E. Shcheklein, V.Y. Luk'yanenko, A.F. Mikhajlova, I.M. Russkikh, E.N. Seleznyov, A.V. Kozlov, The optimization of radiation protection composition, Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika 2015 (2015) 36-42, https://doi.org/10.26583/npe.2015.4.04. 
  15. O.L. Tashlykov, S.E. Shcheklein, I.M. Russkikh, E.N. Seleznev, A.V. Kozlov, Composition optimization of homogeneous radiation-protective materials for planned irradiation conditions, Atom. Energy 121 (2017) 303-307, https://doi.org/10.1007/s10512-017-0202-7. 
  16. K.A. Mahmoud, O.L. Tashlykov, M.H.A. Mhareb, A.H. Almuqrin, Y.S.M. Alajerami, M.I. Sayyed, A new heavy-mineral doped clay brick for gamma-ray protection purposes, Appl. Radiat. Isot. 173 (2021) 109720, https://doi.org/10.1016/j.apradiso.2021.109720. 
  17. H. Durak, E. Kavaz, B. Oto, A. Aras, The impact of Co addition on neutron-photon protection characteristics of red and yellow clays-based bricks: an experimental study, Prog. Nucl. Energy 143 (2022) 104047, https://doi.org/10.1016/j.pnucene.2021.104047. 
  18. H.S. Mann, G.S. Brar, G.S. Mudahar, Gamma-ray shielding effectiveness of novel light-weight clay-flyash bricks, Radiat. Phys. Chem. 127 (2016) 97-101, https://doi.org/10.1016/j.radphyschem.2016.06.013. 
  19. S. Kiatwattanacharoen, P. Srimaroeng, S. Kothan, C. Jumpee, H.J. Kim, S. Kaewjaeng, A Study of X-Ray Radiation Shielding Properties of Bricks Contained Barium Sulfate, 2020 060004, https://doi.org/10.1063/5.0022959. 
  20. K.A. Mahmoud, A.M.A. El-Soad, E.G. Kovaleva, N. Almousa, M.I. Sayyed, O. L. Tashlykov, Modeling a three-layer container based on halloysite nano-clay for radioactive waste disposal, Prog. Nucl. Energy 152 (2022), https://doi.org/10.1016/j.pnucene.2022.104379. 
  21. K.S. Mann, M.S. Heer, A. Rani, Investigation of clay bricks for storage facilities of radioactive-wastage, Appl. Clay Sci. 119 (2016) 249-256, https://doi.org/10.1016/j.clay.2015.10.022. 
  22. B.S. Sidhu, A.S. Dhaliwal, K.S. Kahlon, S. Singh, On the use of flyash-lime-gypsum (FaLG) bricks in the storage facilities for low level nuclear waste, Nucl. Eng. Technol. 54 (2022) 674-680, https://doi.org/10.1016/j.net.2021.08.006. 
  23. L.A. Escalera-Velasco, H.A. De Leon-Martinez, C.G. Hernandez-Murillo, H.R. Vega-Carrillo, J.R. Molina-Contreras, V. Palos-Barba, A. Sanchez-Ortiz, Radiation shielding and dosimetric parameters of mexican artisanal bricks, Appl. Radiat. Isot. 188 (2022) 110355, https://doi.org/10.1016/j.apradiso.2022.110355. 
  24. L.A. Escalera-Velasco, J.R. Molina-Contreras, C.G. Hernandez-Murillo,H.A. De Leon-Martinez, H.R. Vega-Carrillo, J.A. Rodriguez-Rodriguez, I.A. Lopez-Salas, Shielding behavior of artisanal bricks against ionizing photons, Appl. Radiat. Isot. 161 (2020) 109167, https://doi.org/10.1016/j.apradiso.2020.109167. 
  25. M.I. Sayyed, M.Y. AlZaatreh, M.G. Dong, M.H.M. Zaid, K.A. Matori, H.O. Tekin, A comprehensive study of the energy absorption and exposure buildup factors of different bricks for gamma-rays shielding, Results Phys. 7 (2017) 2528-2533, https://doi.org/10.1016/j.rinp.2017.07.028. 
  26. B. Albarzan, A.H. Almuqrin, M.S. Koubisy, E.A.A. Wahab, K.A. Mahmoud, KhS. Shaaban, M.I. Sayyed, Effect of Fe2O3 doping on structural, FTIR and radiation shielding characteristics of aluminium-lead-borate glasses, Prog. Nucl. Energy 141 (2021) 103931, https://doi.org/10.1016/j.pnucene.2021.103931. 
  27. M.I. Sayyed, M.Y. Hanfi, K.A. Mahmoud, A. Abdelaziem, Theoretical Investigation of the radiation-protection properties of the CBS glass family, Optik 258 (2022) 168851, https://doi.org/10.1016/j.ijleo.2022.168851. 
  28. K.G. Mahmoud, M.S. Alqahtani, O.L. Tashlykov, V.S. Semenishchev, M.Y. Hanfi, The influence of heavy metallic wastes on the physical properties and gamma-ray shielding performance of ordinary concrete: experimental evaluations, Radiat. Phys. Chem. 206 (2023) 110793, https://doi.org/10.1016/j.radphyschem.2023.110793. 
  29. R.S. Aita, K.A. Mahmoud, H.A.A. Ghany, E.M. Ibrahim, M.G. El-Feky, I.E. El Aassy, Impacts of siltstone rocks on the ordinary concrete's physical, mechanical and gamma-ray shielding properties: an experimental examination, Nucl. Eng. Technol. (2024), https://doi.org/10.1016/j.net.2024.01.014. 
  30. I. Akkurt, H. Akyildirim, Radiation transmission of concrete including pumice for 662, 1173 and 1332keV gamma rays, Nucl. Eng. Des. 252 (2012) 163-166, https://doi.org/10.1016/j.nucengdes.2012.07.008. 
  31. I. Akkurt, B. Mavi, A. Akkurt, C. Basyigit, S. Kilincarslan, H.A. Yalim, Study on dependence of partial and total mass attenuation coefficients, J. Quant. Spectrosc. Radiat. Transf. 94 (2005) 379-385, https://doi.org/10.1016/j.jqsrt.2004.09.024. 
  32. I. Akkurt, S. Kilincarslan, C. Basyigit, The photon attenuation coefficients of barite, marble and limra, Ann. Nucl. Energy 31 (2004) 577-582, https://doi.org/10.1016/j.anucene.2003.07.002. 
  33. E.O. Echeweozo, A.D. Asiegbu, E.L. Efurumibe, Investigation of kaolin - granite composite bricks for gamma radiation shielding, International Journal of Advanced Nuclear Reactor Design and Technology 3 (2021) 194-199, https://doi.org/10.1016/j.jandt.2021.09.007. 
  34. H.S. Mann, G.S. Brar, K.S. Mann, G.S. Mudahar, Experimental investigation of clay fly ash bricks for gamma-ray shielding, Nucl. Eng. Technol. 48 (2016) 1230-1236, https://doi.org/10.1016/j.net.2016.04.001. 
  35. B. Dogan, N. Altinsoy, Investigation of Photon Attenuation Coefficient of Some Building Materials Used in Turkey, 2015 020033, https://doi.org/10.1063/1.4914224. 
  36. H.S. Isfahani, S.M. Abtahi, M.A. Roshanzamir, A. Shirani, S.M. Hejazi, Investigation on gamma-ray shielding and permeability of clay-steel slag mixture, Bull. Eng. Geol. Environ. 78 (2019) 4589-4598, https://doi.org/10.1007/s10064-018-1391-6. 
  37. H. Share Isfahani, S.M. Abtahi, M.A. Roshanzamir, A. Shirani, S.M. Hejazi, Permeability and gamma-ray shielding efficiency of clay modified by barite powder, Geotech. Geol. Eng. 37 (2019) 845-855, https://doi.org/10.1007/s10706-018-0654-0.