Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF2022M2D2A1A02061334) and the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (Ministry of Trade, Industry and Energy) (No.KETEP-20181510101970).
References
- Severe Accident Management Programmes for Nuclear Power Plants, INTERNATIONAL ATOMIC ENERGY AGENCY, Vienna, 2009.
- Nuclear Regulatory Commission, Risk Assessment of Severe Accident-Induced Steam Generator Tube Rupture, W.D.C.O.o.N.R.R, 1998, p. 218. United States.
- P. MacDonald, V. Shah, L. Ward, P. Ellison, Steam Generator Tube Failures, Nuclear Regulatory Commission, 1996.
- A. Auvinen, J.K. Jokiniemi, A. Lahde, T. Routamo, P. Lundstrom, H. Tuomisto, J. Dienstbier, S. Guntay, D. Suckow, A. Dehbi, Steam generator tube rupture (SGTR) scenarios, Nucl. Eng. Des. 235 (2-4) (2005) 457-472. https://doi.org/10.1016/j.nucengdes.2004.08.060
- S.I. Kim, H.S. Kang, Y.S. Na, E.H. Ryu, R.J. Park, J.H. Park, Y.M. Song, J. Song, S. W. Hong, Analysis of steam generator tube rupture accident for OPR 1000 nuclear power plant, Nucl. Eng. Des. 382 (2021), 111403.
- N.R. Commission, Severe accident risks: an assessment for five US nuclear power plants: appendices A, B, and C, Nuclear Regulat. Commission (1990).
- W. Choi, H.-Y. Kim, R.-J. Park, S.J. Kim, Effectiveness and adverse effects of in-vessel retention strategies under a postulated SGTR accident of an OPR1000, J. Nucl. Sci. Technol. 54 (3) (2017) 337-347. https://doi.org/10.1080/00223131.2016.1273145
- S. Sancaktar, Consequential SGTR Analysis for Westinghouse and Combustion Engineering Plants with Thermally Treated Alloy 600 and 690 Steam Generator Tubes, Office of Nuclear Regulatory Research, US Nuclear Regulatory Commission, 2016.
- J. Song, B. Lee, S. Kim, K. Ha, An analysis on the steam generator tube rupture events with core damage, Ann. Nucl. Energy 150 (2021), 107877.
- C. Fletcher, R. Beaton, V. Palazov, D. Caraher, R. Shumway, I. Falls, SCDAP/RELAP5 Thermal-Hydraulic Evaluations of the Potential for Containment Bypass during Extended Station Blackout Severe Accident Sequences in a Westinghouse Four-Loop PWR, US-NRC, San Diego, USA, 2010.
- T. Kim, W. Choi, J. Jeon, N.K. Kim, S.J. Kim, Investigation on Fission Products Release Mitigated by In-Containment Relief Valve under SGTR Accident, 2018.
- I. Kaneko, M. Fukasawa, M. Naito, K. Miyata, M. Matsumoto, Experimental Study on Aerosol Removal Effect by Pool Scrubbing, 1993, pp. 453-463. United States.
- M.Y. Kim, Y.S. Bang, T.K. Park, D.Y. Lee, B.C. Lee, S.H. Park, Containment aerosol characterization during nuclear power plant severe accident, Part. Sci. Technol. 34 (5) (2016) 622-632. https://doi.org/10.1080/02726351.2015.1099066
- H. Bunz, M. Koyro, W. Schock, NAUA Mod 4: a code for calculating aerosol behaviour in LWR core melt accidents. Code Description and Users Manual, Kernforschungszentrum Karlsruhe, 1983, pp. 1-66.
- H.-J. Allelein, S. Arndt, W. Klein-Hessling, S. Schwarz, C. Spengler, G. Weber, COCOSYS: status of development and validation of the German containment code system, Nucl. Eng. Des. 238 (4) (2008) 872-889. https://doi.org/10.1016/j.nucengdes.2007.08.006
- K. Murata, D. Carroll, K. Washington, F. Gelbard, G. Valdez, D. Williams, K. Bergeron, User's Manual for CONTAIN 1.1: a Computer Code for Severe Nuclear Reactor Accident Containment Analysis, Sandia National Lab.(SNL-NM), Albuquerque, NM (United States), 1989.
- T. Lind, S. Campbell, L. Herranz, M. Kissane, J. Song, A summary of fission-product-transport phenomena during SGTR severe accidents, Nucl. Eng. Des. 363 (2020), 110635.
- L.L. Humphries, B.A.B., F. Gelbard, D.L. Louie, J. Phillips, MELCOR Computer Code Manuals, SAND 2017-0455 O, 2017, pp. 93-2185.
- U.N.R. Commission, Computational Fluid Dynamics Analysis of Natural Circulation Flows in a Pressurized-Water Reactor Loop under Severe Accident Conditions, NUREG-1922, October, 2010.
- C. Co, Flow of Fluids through Valves, Fittings, and Pipe, Crane Company, 1988.
- Y.H. Kim, J. Yoon, Y.H. Jeong, Experimental study of the nozzle size effect on aerosol removal by pool scrubbing, Nucl. Eng. Des. 385 (2021), 111544.
- P.C. Owczarski, K.W. Burk, SPARC-90: A Code for Calculating Fission Product Capture in Suppression Pools, 1991, p. 81. United States.
- J. Lopez-Jimenez, J. Herranz, M. Escudero, M. Espigares, V. Peyres, J. Polo, C. Kortz, M. Koch, U. Brockmeier, H. Unger, Pool Scrubbing, Centro de Investigaciones Energeticas, 1996.
- Y. Liao, K. Vierow, MELCOR analysis of steam generator tube creep rupture in station blackout severe accident, Nucl. Technol. 152 (3) (2005) 302-313. https://doi.org/10.13182/NT05-5
- L.S. Lebel, R.S. Dickson, G.A. Glowa, Radioiodine in the atmosphere after the Fukushima Dai-ichi nuclear accident, J. Environ. Radioact. 151 (2016) 82-93. https://doi.org/10.1016/j.jenvrad.2015.06.001
- D. Paul, L. Flanigan, J. Cunnane, R. Cudnik, R. Collier, R. Oehlberg, Radionuclide Scrubbing in Water Pools-Gas-Liquid Hydrodynamics, 1985.
- C. Berna, A. Escriv' a, J. Munoz-Cobo, ˜ L.E. Herranz, Enhancement of the SPARC90 code to pool scrubbing events under jet injection regime, Nucl. Eng. Des. 300 (2016) 563-577. https://doi.org/10.1016/j.nucengdes.2016.02.027
- R.O. Gauntt, MELCOR 1.8. 5 Modeling Aspects of Fission Product Release, Transport and Deposition an Assessment with Recommendations, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA, 2010.