참고문헌
- E. Zio, The future of risk assessment, Reliab. Eng. Syst. Saf. (2018), https://doi.org/10.1016/j.ress.2018.04.020.
- L. Pinciroli, P. Baraldi, G. Ballabio, M. Compare, E. Zio, Optimization of the operation and maintenance of renewable energy systems by deep reinforcement learning, Renew. Energy 183 (2022) 752-763. https://doi.org/10.1016/j.renene.2021.11.052
- E. Gursel, B. Reddy, A. Khojandi, M. Madadi, J.B. Coble, V. Agarwal, V. Yadav, R. L. Boring, Using artificial intelligence to detect human errors in nuclear power plants: a case in operation and maintenance, Nucl. Eng. Technol. (2022), https://doi.org/10.1016/j.net.2022.10.032.
- E. Zio, Prognostics and Health Management (PHM): where are we and where do we (need to) go in theory and practice, Reliab. Eng. Syst. Saf. 218 (2022), 108119.
- P. Baraldi, F. Mangili, E. Zio, Investigation of uncertainty treatment capability of model-based and data-driven prognostic methods using simulated data, Reliab. Eng. Syst. Saf. 112 (2013) 94-108. https://doi.org/10.1016/j.ress.2012.12.004
- F. Di Maio, P. Baraldi, E. Zio, R. Seraoui, Fault detection in nuclear power plants components by a combination of statistical methods, IEEE Trans. Reliab. 62 (2013) 833-845. https://doi.org/10.1109/TR.2013.2285033
- L.M. Elshenawy, M.A. Halawa, T.A. Mahmoud, H.A. Awad, M.I. Abdo, Unsupervised machine learning techniques for fault detection and diagnosis in nuclear power plants, Prog. Nucl. Energy 142 (2021), 103990.
- G. Qian, J. Liu, Development of deep reinforcement learning-based fault diagnosis method for rotating machinery in nuclear power plants, Prog. Nucl. Energy 152 (2022), 104401.
- Z. Welz, J. Coble, B. Upadhyaya, W. Hines, Maintenance-based prognostics of nuclear plant equipment for long-term operation, Nucl. Eng. Technol. 49 (2017) 914-919, https://doi.org/10.1016/j.net.2017.06.001.
- M. Compare, P. Baraldi, E. Zio, Challenges to IoT-enabled predictive maintenance for industry 4.0, IEEE Internet Things J. 7 (2019) 4585-4597. https://doi.org/10.1109/JIOT.2019.2957029
- H. Peng, Y. Wang, X. Zhang, Q. Hu, B. Xu, Optimization of preventive maintenance of nuclear safety-class DCS based on reliability modeling, Nucl. Eng. Technol. 54 (2022) 3595-3603, https://doi.org/10.1016/j.net.2022.05.011.
- H.A. Gohel, H. Upadhyay, L. Lagos, K. Cooper, A. Sanzetenea, Predictive maintenance architecture development for nuclear infrastructure using machine learning, Nucl. Eng. Technol. 52 (2020) 1436-1442, https://doi.org/10.1016/j.net.2019.12.029.
- T. Jiejuan, M. Dingyuan, X. Dazhi, A genetic algorithm solution for a nuclear power plant risk-cost maintenance model, Nucl. Eng. Des. 229 (2004) 81-89. https://doi.org/10.1016/S0029-5493(03)00210-3
- A.W. Labib, M.N. Yuniarto, Maintenance strategies for changeable manufacturing, in: Changeable and Reconfigurable Manufacturing Systems, Springer, 2009, pp. 337-351.
- L. Pinciroli, P. Baraldi, G. Ballabio, C. Compare, E. Zio, Deep reinforcement learning for optimizing operation and maintenance of energy systems equipped with phm capabilities, in: Proceedings of the Proceedings of the 30th European Safety and Reliability Conference and the 15th Probabilistic Safety Assessment and Management Conference, 2020.
- M.T. Kartal, A. Samour, T.S. Adebayo, S.K. Depren, Do nuclear energy and renewable energy surge environmental quality in the United States? New insights from novel bootstrap Fourier Granger causality in quantiles approach, Prog. Nucl. Energy 155 (2023), 104509.
- G. Chen, M. Li, Y. Zou, H. Xu, Analysis of load-following operation characteristics of liquid fuel molten salt reactor, Prog. Nucl. Energy 150 (2022), 104308.
- B. Tjahjono, C. Esplugues, E. Ares, G. Pelaez, What does industry 4.0 mean to supply chain? Procedia Manuf. 13 (2017) 1175-1182. https://doi.org/10.1016/j.promfg.2017.09.191
- Z. Hao, F. Di Maio, L. Pinciroli, E. Zio, Optimal prescriptive maintenance of nuclear power plants by deep reinforcement learning, in: Proceedings of the Proceedings of the 32nd European Safety and Reliability Conference, 2022.
- V. Holmgren, General-purpose Maintenance Planning Using Deep Reinforcement Learning and Monte Carlo Tree Search, 2019.
- M. Grottke, R. Matias, K.S. Trivedi, The fundamentals of software aging, in: Proceedings of the 2008 IEEE International Conference on Software Reliability Engineering Workshops (ISSRE Wksp), Ieee, 2008, pp. 1-6.
- K.S. Trivedi, K. Vaidyanathan, K. Goseva-Popstojanova, Modeling and analysis of software aging and rejuvenation, in: Proceedings of the Proceedings 33rd Annual Simulation Symposium (SS 2000), IEEE, 2000, pp. 270-279.
- W. Wang, A. Cammi, F. Di Maio, S. Lorenzi, E. Zio, A Monte Carlo-based exploration framework for identifying components vulnerable to cyber threats in nuclear power plants, Reliab. Eng. Syst. Saf. 175 (2018) 24-37. https://doi.org/10.1016/j.ress.2018.03.005
- Z. Hao, F. Di Maio, E. Zio, A multi-state model of the aging process of cyber-physical systems, in: Proceedings of the 30th European Safety and Reliability Conference, ESREL 2020 and 15th Probabilistic Safety Assessment and Management Conference, PSAM15 2020, Research Publishing, Singapore, 2020, pp. 2241-2248.
- Y. Huang, C. Kintala, N. Kolettis, N.D. Fulton, Software rejuvenation: analysis, module and applications, in: Proceedings of the Twenty-Fifth International Symposium on Fault-Tolerant Computing. Digest of Papers, IEEE, 1995, pp. 381-390.
- D. Cotroneo, R. Natella, R. Pietrantuono, S. Russo, A survey of software aging and rejuvenation studies, ACM J. Emerg. Technol. Comput. Syst. 10 (2014) 1-34. https://doi.org/10.1145/2539117
- R.S. Sutton, A.G. Barto, Reinforcement Learning: an Introduction, MIT press, 2018. ISBN 0262352702.
- J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, Proximal Policy Optimization Algorithms, 2017 arXiv Prepr. arXiv1707.06347.
- J. Ho, J.K. Gupta, S. Ermon, Model-free imitation learning with policy optimization, in: Proceedings of the 33rd International Conference on Machine Learning, vol. 6, ICML 2016, 2016, pp. 4036-4046.
- Z. Hao, F. Di Maio, E. Zio, Dynamic reliability assessment of cyber-physical energy systems (CPEs) by GTST-MLD, in: Proceedings of the 2021 5th International Conference on System Reliability and Safety (ICSRS), IEEE, 2021, pp. 98-102.
- Z. Hao, F. Di Maio, E. Zio, Modelling the Aging Process of a Cyber Physical System, 2019.
- Z. Hao, F. Di Maio, E. Zio, Multi-state reliability assessment model of base-load cyber-physical energy systems (CPES) during flexible operation considering the aging of cyber components, Energies 14 (2021) 3241.
- R. Ponciroli, A. Bigoni, A. Cammi, S. Lorenzi, L. Luzzi, Object-oriented modelling and simulation for the ALFRED dynamics, Prog. Nucl. Energy 71 (2014) 15-29. https://doi.org/10.1016/j.pnucene.2013.10.013
- K.J. Astrom, B. Wittenmark, Computer-controlled Systems: Theory and Design, Courier Corporation, 2013. ISBN 0486284042.
- X. Du, Y. Qi, D. Hou, Y. Chen, X. Zhong, Modeling and performance analysis of software rejuvenation policies for multiple degradation systems, in: Proceedings of the 2009 33rd Annual IEEE International Computer Software and Applications Conference, vol. 1, IEEE, 2009, pp. 240-245.
- Y.-J. Lin, J.-M. Yang, R.-Y. Wang, Y.-X. Yang, Research on common cause fault evaluation model of RTS based on β-factor method, in: Proceedings of the International Symposium on Software Reliability, Industrial Safety, Cyber Security and Physical Protection for Nuclear Power Plant, Springer, 2022, pp. 590-599.
- Z.-G. Wu, J. Zhu, X.-B. Yu, Reliability analysis of tripping solenoid valve power system based on dynamic fault tree and sequential Monte Carlo, in: Proceedings of the International Symposium on Software Reliability, Industrial Safety, Cyber Security and Physical Protection for Nuclear Power Plant, Springer, 2022, pp. 148-158.
- N. Vanvuchelen, J. Gijsbrechts, R. Boute, Use of proximal policy optimization for the joint replenishment problem, Comput. Ind. 119 (2020), 103239, https://doi.org/10.1016/j.compind.2020.103239.
- S. Ross, J.A. Bagnell, Efficient reductions for imitation learning, J. Mach. Learn. Res. 9 (2010) 661-668.
- Z. Hao, F. Di Maio, E. Zio, Optimal prescriptive maintenance of nuclear power plants by deep reinforcement learning, in: Proceedings of the 32nd European Safety and Reliability Conference, ESREL, 2022, p. 2022.
- G. Terol, Porous Media Approach in CFD Thermohydraulic Simulation of Nuclear Generation-IV Lead-Cooled Fast Reactor ALFRED, 2021.
- F. Di Maio, R. Mascherona, E. Zio, Risk analysis of cyber-physical systems by GTSTMLD, IEEE Syst. J. 14 (2019) 1333-1340. https://doi.org/10.1109/JSYST.2019.2928046
- S. Zhang, M. Du, J. Tong, Y.-F. Li, Multi-objective optimization of maintenance program in multi-unit nuclear power plant sites, Reliab. Eng. Syst. Saf. 188 (2019) 532-548. https://doi.org/10.1016/j.ress.2019.03.034
- S. Martorell, A. Sanchez, S. Carlos, V. Serradell, Simultaneous and multi-criteria optimization of TS requirements and maintenance at NPPs, Ann. Nucl. Energy 29 (2002) 147-168. https://doi.org/10.1016/S0306-4549(01)00037-8
- H. Ludwig, T. Salnikova, A. Stockman, U. Waas, Load cycling capabilities of German nuclear power plants (NPP), VGB PowerTech 91 (2011) 38-44.
- O. Eungse, L. Kangdae, Y. Sungok, Evaluation of commercial digital control systems for NPP I&C system upgrades, in: Proceedings of the Transactions of the, Korean Nuclear Society Spring Meeting, 2007.
- International Atomic Energy Agency Non-baseload Operations in Nuclear Power Plants: Load Following and Frequency Control Modes of Flexible Operation, IAEA, 2018. ISBN 9201108168.
- R.T. Rockafellar, S. Uryasev, Conditional value-at-risk for general loss distributions, J. Bank. Finance 26 (2002) 1443-1471. https://doi.org/10.1016/S0378-4266(02)00271-6