DOI QR코드

DOI QR Code

Demonstration of an ultrasonic imaging system for molten lead

  • Received : 2023.08.07
  • Accepted : 2023.11.30
  • Published : 2024.04.25

Abstract

2D and 3D ultrasonic imaging has so far not been demonstrated in pure molten lead in the open literature. In this study the development of such an ultrasonic device for imaging is outlined and results from testing at 380 ℃ in lead are presented. The main difficulties were found to be achieving then maintaining suitable wetting while ensuring suitable durability of the device, both due to the harsh nature of molten lead and the elevated temperatures. The successful detection and imaging (2D and 3D), of differently shaped targets, where the features were above the size of the transmitted ultrasound beam was demonstrated.

Keywords

Acknowledgement

The authors would like to gratefully acknowledge practical assistance and contributions to the work from the following; Richard Todd (Ionix), Adrian Crimp, Jake Rusby (Univ. Bristol Physics Workshop), Tomas Martin (Bristol Physics), Shyam Radhe (Univ. Bristol MatLab), Serena Bassini (ENEA), Simon Middleburgh (Bangor University), Elen Williams, Laurie Crouch, Elizabeth Parker-Quaife (NNL).

References

  1. P. Ferroni, et al., The Westinghouse Lead Fast Reactor: Overview and Update on Development Program, 2023.
  2. R.N. Ord, R.W. Smith, Development of an Under-sodium Ultrasonic Scanner for In-Reactor Surweillance, HEDL-TME-72-91, Jan. 1972, 4648095, https://doi.org/10.2172/4648095.
  3. R. Hans, E. Kranz, H. Weiss, Under sodium viewing - a method to identify objects in an opaque medium, Liq. Met. Eng. Technol. 1 (1984), 1.
  4. K. Swaminathan, A. Rajendran, G. Elumalai, The development and deployment of an ultrasonic under-sodium viewing system in the fast breeder test reactor, IEEE Trans. Nucl. Sci. 37 (1990) 1571-1577.
  5. A. Rajendran, C. Asokane, G. Elumalai, K. Swaminathan, Development of an ultrasonic UnderSodium scanner for the fast breeder test reactor, NDT Nucl. Ind. Proc. 14th World Conf Non-Destr. Test. 2 (1996) 349-352.
  6. H. Karasawa, M. Izumi, T. Suzuki, S. Nagai, M. Tamura, S. Fujimori, Development of under-sodium three-dimensional visual inspection Technique using matrix-arrayed ultrasonic transducer, J. Nucl. Sci. Technol. 37 (9) (Sep. 2000), 9, https://doi.org/10.1080/18811248.2000.9714955.
  7. M. Ando, S. Kubo, Y. Kamishima, T. Itisuka, Study on in-service inspection program and inspection technologies for commercialized sodium-cooled fast reactor, Proc. ICONE14 Int. Conf. Nucl. Eng. (2006). Paper #89558.
  8. K. Wang, H.-T. Chien, T.W. Elmer, W.P. Lawrence, D.M. Engel, S.-H. Sheen, Development of ultrasonic waveguide techniques for under-sodium viewing, NDT E Int. 49 (Jul. 2012) 71-76, https://doi.org/10.1016/j.ndteint.2012.03.006.
  9. H.-W. Kim, Y.-S. Joo, C.-G. Park, J.-B. Kim, J.-H. Bae, Ultrasonic imaging in hot liquid sodium using a plate-type ultrasonic waveguide sensor, J. Nondestr. Eval. 33 (4) (Dec. 2014), 4, https://doi.org/10.1007/s10921-014-0262-8.
  10. H.-T. Chien, T. Elmer, D.M. Engel, W.P. Lawrence, Development and Demonstration of Ultrasonic Under-sodium Viewing System for SFRs, IAEA-CN-245-139, 2017.
  11. J.W. Griffin, et al., Under-Sodium Viewing: A Review of Ultrasonic Imaging Technology for Liquid Metal Fast Reactors, PNNL-18292, Mar. 2009, 1010482, https://doi.org/10.2172/1010482.
  12. E.G. Tarpara, V.H. Patankar, N.V. Varier, Under Sodium Ultrasonic Viewing for Fast Breeder Reactors: a Review, BARC/2016/E/014, 2016, p. 74.
  13. R. Kazys, et al., Investigation of ultrasonic properties of a liquid metal used as a coolant in accelerator driven reactors, in: 2002 IEEE Ultrasonics Symposium, 2002. Proceedings., IEEE, Munich, Germany, 2002, pp. 815-818, https://doi.org/10.1109/ULTSYM.2002.1193522.
  14. R. Kazys, et al., Development of ultrasonic sensors for operation in a heavy liquid metal, IEEE Sensor. J. 6 (5) (Oct. 2006), 5, https://doi.org/10.1109/JSEN.2006.877997.
  15. E. Jasi, Ultrasonic imaging techniques for non-destructive testing of nuclear reactors, cooled by liquid metals: review, Ultrasound 5 (2007).
  16. R. Kazys, A. Voleisis, R. Sliteris, B. Voleisiene, L. Mazeika, H.A. Abderrahim, Research and development of radiation resistant ultrasonic sensors for quasi- image forming systems in a liquid lead-bismuth, Ultrasound 62 (2007) 9.
  17. M. Dierckx, D. Van Dyck, L. Vermeeren, W. Bogaerts, Research towards ultrasonic systems to assist in-vessel manipulations in liquid metal cooled reactors, Nucl. Sci. IEEE Trans. 61 (4) (2014). Art. no. 4.
  18. V.D. Svet, D.A. Dement'ev, Ultrasound imaging in nuclear reactors cooled by liquid metals, Open J. Acoust. 5 (1) (2015) 11-24, https://doi.org/10.4236/oja.2015.51002.
  19. R. Kazys, V. Vaskeliene, High temperature ultrasonic transducers: a review, Sensors 21 (9) (May 2021), https://doi.org/10.3390/s21093200. Art. no. 9.
  20. J. Hawes, J. Knapp, R. Burrows, R. Montague, S. Walters, Achieving wetting in molten lead for ultrasonic applications, Nuclear Engineering and Technology (2023). https://doi.org/10.1016/j.net.2023.10.015.
  21. https://ionixadvancedtechnologies.co.uk/.
  22. https://ionixadvancedtechnologies.co.uk/products-3/continuous-monitoring-transducer/#hotsense-380-specifications.
  23. P.S. Popel', D.A. Yagodin, A.G. Mozgovoi, M.A. Pokrasin, An experimental investigation of the velocity of sound in molten lead and bismuth and in their reciprocal eutectic alloy at high temperatures, High Temp. 48 (2) (Apr. 2010), 2, https://doi.org/10.1134/S0018151X10020070.