DOI QR코드

DOI QR Code

Fabrication of a superheated emulsion based on Freon-12 and LiCl suitable for thermal neutrons detection

  • Sara Sadat Madani Kouchak (Department of Physics and Energy Engineering, Amirkabir University of Technology) ;
  • Dariush Rezaei Ochbelagh (Department of Physics and Energy Engineering, Amirkabir University of Technology) ;
  • Peiman Rezaeian (Radiation Applications Research School, Nuclear Science and Technology Research Institute) ;
  • Majid Abdouss (Department of Chemistry, Amirkabir University of Technology)
  • Received : 2023.06.10
  • Accepted : 2023.11.27
  • Published : 2024.04.25

Abstract

This study develops superheated emulsion detectors that are both sensitive to fast neutrons, and thermal neutrons owing to the exergonic 63Li(n, α)31H capture reaction caused by the 6Li-containing compound dispersed throughout the gel-like medium. The experimental research was conducted on two SEDs. One detector was an ordinary Freon-12 detector and the other was a Freon-12 detector containing 3.4 % (by weight) LiCl. In order to investigate the sensitivity of lithium-containing SEDs to thermal neutrons, two types of SEDs were simultaneously exposed to various flux levels of thermal neutrons from 241Am-Be neutron source inside a cylindrical tank filled with water. A Boron-lined proportional counter was used to estimate the thermal neutron flux and the relevant MCNP code was developed for flux and dose calculations in the prepared set-up around 241Am-Be source. The results demonstrate that there is a proportional relationship between the variations of SED response and the change in thermal neutron flux and dose. Also, the sensitivity of SED was estimated.

Keywords

Acknowledgement

The authors would like to thank Mr. Ali Elhampour, Mr. Soroush Mohtashami, and Mr. Mahdi Sahraian for their assistance during this research work. The authors are also thankful to the neutron laboratory at the Amirkabir University of Technology for providing the Am-Be source.

References

  1. R.L. Moss, Critical review, with an optimistic outlook, on boron neutron capture therapy (BNCT), Appl. Radiat. Isot. 88 (2014) 2-11. 
  2. Matthew P. Blakeley, Paul Langan, Nobuo Niimura, Podjarny Alberto, Neutron crystallography: opportunities, challenges, and limitations, Curr. Opin. Struct. Biol. 18 (5) (2008) 593-600. 
  3. Richard T. Kouzes, James H. Ely, Luke E. Erikson, Warnick J. Kernan, Azaree T. Lintereur, Edward R. Siciliano, Daniel L. Stephens, David C. Stromswold, Renee M. Van Ginhoven, Mitchell L. Woodring, Neutron detection alternatives to 3He for national security applications, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip 623 (3) (2010) 1035-1045. 
  4. A. Ravazzani, A.F. Para, R. Jaime, M. Looman, M.M. Ferrer, Characterisation of He3 proportional counter, Radiat. Meas. 41 (5) (2006) 582-593. 
  5. D.R. Ochbelagh, Comparison of 3He and BF3 neutron detectors used to detect hydrogenous material buried in soil, Radiat. Phys. Chem. 81 (4) (2012) 379-382. 
  6. Alan J. Hurd, Richard T. Kouzes, Why new neutron detector materials must replace helium-3, Eur. Phys. J. A 129 (236) (2014) 3. 
  7. D.A. Shea, D. Morgan, The helium-3 shortage: supply, demand, and options for congress, in: CRS Report for Congress, Congressional Research Service, 2010. 
  8. R.E. Apfel, The superheated drop detector, Nucl. Instrum. Methods 162 (1-3) (1979) 603-608. 
  9. H. Ing, H.C. Birnboim, A bubble-damage polymer detector for neutrons, Nucl. Tracks Radiat. Meas. 8 (1-4) (1984) 285-288. 
  10. J. Schulze, W. Rosenstoke, H.L. Kronholz, Measuremants of fast neutrons by bubble detectors, Radiat. Protect. Dosim. 44 (1/4) (1992) 351-354. 
  11. A. Di Fulvio, C. Domingo, M. De San Pedro, E. D'Agostino, M. Caresana, L. Tana, F. d'Errico, Superheated emulsions and track etch detectors for photoneutron measurements, Radiat. Meas. 57 (2013) 19-28. 
  12. S.C. Roy, R.E. Apfel, Y.-C. Lo, Superheated drop detector: a potential tool in neutron research, Nucl. Instrum. Methods 255 (1-2) (1987) 199-206. 
  13. R.E. Apfel, Photon-insensitive, thermal to fast neutron detector, Nucl. Instrum. Methods 179 (3) (1981) 615-616. 
  14. S. Vaijapurkar, R. Paturkar, R. Raman, P. Bhatnagar, A. Pandya, S. Roy, A neutron sensor based on superheated droplets, Radiat. Meas. 23 (4) (1994) 753-755. 
  15. B.J. Lewis, M.B. Smith, H. Ing, H.R. Andrews, R. Machrafi, L. Tomi, T.J. Matthews, L. Veloce, V. Shurshakov, I. Tchernykh, N. Khoshooniy, Review of bubble detector response charactristics and resultsfrom space, Radiat. Protect. Dosim. 150 (1) (2012) 1-21. 
  16. L.K. Pan, C.-K.C. Wang, Superheated-liquid-droplet technique for measuring alpha decays in uranium solutions, Nucl. Instrum. Methods Phys. Res. 420 (1999) 345-355. 
  17. S.G. Vaijapukar, R.T. Paturkar, Superheated liquid neutron sensor based on polymer matrix, Radiat. Meas. 24 (3) (1995) 309-313. 
  18. F. Seitz, On the theory of the bubble chamber, Phys. Fuids 1 (1) (1958) 2. 
  19. R.E. Apfel, S.C. Roy, Y.-C. Lo, Prediction of the minimum neutron energy to nucleate vapor bubble in superheated liquids, Phys. Rev. 31 (5) (1985) 3194-3198. 
  20. W. Lim, C.K. Wang, Computational studies of neutron response function for a neutron spectrometer which uses Freon-12, -22, and -115 superheated liquids, Nucl. Instrum. Methods 335 (1-2) (1993) 243-247. 
  21. E.I. du Pont de Nemours & Co., Thermodynamic properties of DuPontTM Freon® 12 (R-12) refrigerants [Online]. Available: http://joho.p.free.fr/EC/ENERGIE/_Ressources/FLUIDES%20Frigorig%C3%A8nes/Dupont%20de%20Nemours/www.dupont.com/suva/emea/pdf/thermo_freon12.pdf, 2005. 
  22. James F. Ziegler, M.D. Zigler, J.P. Biersack, SRIM-The stopping and range of ions in matter, Nucl. Instrum. Methods B 268 (11-12) (2010) 1818-1823. 
  23. P. Rezaeian, G. Raisali, A. Akhavan, H. Ghods, B. Hajizadeh, Development of a new pressure dependent threshold superheated drop detector for neutrons, Nucl. Instrum. Methods 776 (2015) 50-56. 
  24. Laurie S. Waters, Gregg W. McKinney, Joe W. Durkee, Michael L. Fensin, John S. Hendricks, Michael R. James, Russell C. Johns, Denise B. Pelowitz, The MCNPX Monte Carlo radiation transport code, AIP Conf. Proc. 896 (1) (2007) 81. 
  25. M. Chemtob, R. Dollo, C. Coquema, J. Chary, , et al.C. Ginisty, Essais de dosim'etres neutrons a ' bulles, modele BD 100 R-PND et modele BDT, Radioprotection 30 (1) (1995) 61-78. 
  26. Guiying Zhang, Bangfa Ni, Li Li, Peng Lv, Weizhi Tian, Zhiqiang Wang, Chunbao Zhang, Hailong Luo, Shunli Jiang, Pingsheng Wang, Donghui Huang, Cunxiong Liu, Caijin Xiao, Study on bubble detectors used as personal neutron dosimeters, Appl. Radiat. Isot. 69 (10) (2011) 1453-1458. 
  27. S.G. Vaijapurkar, R.T. Paturkar, Superheated liquid neutron sensor based on polymer matrix, Radiat. Meas. 24 (3) (1995) 309-313. 
  28. D. Ponraju, H. Krishnan, S. Viswanathan, R. Indira, Preliminary results on bubble detector as personal neutron dosimeter, Radiat. Protect. Dosim. 144 (1-4) (2011) 177-181. 
  29. P. Priyada, R. Ramar, H. Krishnan, S. Viswanathan, Shivaramu, "Gamma photon techniques for detection of nucleation in superheated emulsion detectors for neutron dosimetry,", Radiat. Protect. Dosim. 158 (1) (2013) 100-106. 
  30. F. Vanhavere, M. Coeck, R. Noulty, The BDT bubble neutron detector for personal dosimetry, in: European IRPA Congress 2002, 2002. Italy. 
  31. M. Weinstein, B. Ben-Shachar, U. German, S. Merling, R. Srebr, Experimental data for some characteristics of the bubble neutron detectors, in: Conference of the Nuclear Societies in Israel, 2002.