Acknowledgement
This work was supported by the Ministry of Science and ICT and a National Research Foundation of Korea (NRF) grant funded by the Korean government (2021M2E4A1037979).
References
- R. Moharrami, M. Sanayei, Developing a method in measuring residual stress on steel alloys by instrumented indentation technique, Measurement 158 (2020), 107718, https://doi.org/10.1016/j.measurement.2020.107718.
- L. Xiao, D. Ye, C. Chen, A further study on representative models for calculating the residual stress based on the instrumented indentation technique, Comput. Mater. Sci. 82 (2014) 476-482, https://doi.org/10.1016/j.commatsci.2013.10.014.
- X. Liu, L. Cai, H. Chen, Residual stress indentation model based on material equivalence, Chin. J. Aeronaut. 35 (8) (2021) 304-313, https://doi.org/10.1016/j.cja.2022.01.025.
- Y.H. Lee, D. Kwon, Estimation of biaxial surface stress by instrumented indentation with sharp indenters, Acta Mater. 52 (2004) 1555-1563, https://doi.org/10.1016/j.actamat.2003.12.006.
- J. Jang, Estimation of residual stress by instrumented indentation: a review, J. Ceram. Process. Res. 10 (3) (2009) 391-400, https://doi.org/10.36410/jcpr.2009.10.3.391.
- X. Liu, L. Cai, H. Chn, Residual stress indentation model based on material equivalence, Chin. J. Aeronaut. 35 (8) (2022) 304-313. https://doi.org/10.1016/j.cja.2022.01.025
- H. Jin, W. Yang, L. Yan, Determination of residual stresses and material properties by an energy-based method using artificial neural networks, Proc. Est. Acad. Sci. 61 (4) (2012) 296-305, https://doi.org/10.3176/proc.2012.4.04.
- J. Kim, S. Choi, J. Lee, H. Ahn, Y. Kim, M. Choi, D. Kwon, An indentation method for evaluation of residual stress: estimation of stress-free indentation curve using stress-independent indentation parameters, J. Mater. Res. 34 (2019) 1103-1111, https://doi.org/10.1557/jmr.2018.492.
- K. Jeong, H. Lee, O. Kwon, J. Jung, D. Kwon, H. Han, Prediction of uniaxial tensile flow using finite element-based indentation and optimized artificial neural networks, Mater. Des. 196 (2020), 109104, https://doi.org/10.1016/j.matdes.2020.109104.
- P. Lasson, On the invariance of hardness at Vickers indentation of pre-stressed materials, Metals (2017), https://doi.org/10.3390/met70740260.
- Y. Cao, X. Qian, B. Huber, Spherical indentation into elastoplastic materials: indentation-response based definitions of the representative strain, Mater. Sci. Eng. 454-455 (2007) 1-13, https://doi.org/10.1016/j.msea.2007.01.002.
- N. Huber, C. Tsakmakis, Experimental and theoretical investigation of the effect of kinematic hardening on spherical indentation, Mech. Mater. 27 (1998) 241-248, https://doi.org/10.1016/S0167-6636(98)00005-2.
- E.-H. Lee, T.B. Stoughton, J.W. Yoon, A new strategy to describe nonlinear elastic and asymmetric plastic behaviors with one yield surface, Int. J. Plast. 98 (2017) 217-238. https://doi.org/10.1016/j.ijplas.2017.08.003
- E.-H. Lee, H. Choi, T.B. Stoughton, J.W. Yoon, Combined anisotropic and distortion hardening to describe directional response with Bauschinger effect, Int. J. Plast. 122 (2019) 73-88. https://doi.org/10.1016/j.ijplas.2019.07.007
- A.R. Hosseinzadeh, A.H. Mahmoudi, Measuring nonequibiaxial residual stress and mechanical properties using knop indentation, J. Test. Eval. 48 (2) (2020) 1365-1387, https://doi.org/10.1520/JTE20170730.
- S.S. Ghanbari, A.H. Mahmoudi, An improvement in data interpretation to estimate residual stresses and mechanical properties using instrumented indentation: a comparison between machine learning and Kriging model, Eng. Appl. Artif. Intell. 114 (2022), 105186.
- L. Lu, M. Dao, P. Kumar, U. Ramamurty, G.E. Kaniadakis, S. Suresh, Extraction of mechanical properties of materials through deep learning from instrumented indentation, Proc. Natl. Acad. Sci. USA 117 (13) (2020).
- Dassault, ABAQUS Version 2022. User's Manual, Dassault Systems Simulia, 2022.
- H. Sun, et al., Simultaneous identification of structural parameters and dynamic input with incomplete output-only measurements, Struct. Control Health Monit. 21 (6) (2014) 868-889, https://doi.org/10.1002/stc.1619.
- H. Sun, et al., A sweeping window method for detection of flaws using an explicit dynamic XFEM and absorbing boundary layers, Int. J. Numer. Methods Eng. 105 (2016) 1014-1040, https://doi.org/10.1002/nme.5006.
- N. Munir, et al., Performance enhancement of convolutional neural network for ultrasonic flaw classification by adopting autoencoder, NDT E Int. 111 (2020), 102218, https://doi.org/10.1016/j.ndteint.2020.102218.
- D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, ICLR (2015). https://arxiv.org/abs/1412.6980v9.