DOI QR코드

DOI QR Code

Non-equibiaxial residual stress evaluation methodology using simulated indentation behavior and machine learning

  • Seongin Moon (Korea Atomic Energy Research Institute) ;
  • Minjae Choi (Korea Atomic Energy Research Institute) ;
  • Seokmin Hong (Korea Atomic Energy Research Institute) ;
  • Sung-Woo Kim (Korea Atomic Energy Research Institute) ;
  • Minho Yoon (Department of Mechanical and Information Engineering, University of Seoul)
  • Received : 2023.05.09
  • Accepted : 2023.11.20
  • Published : 2024.04.25

Abstract

Measuring the residual stress in the components in nuclear power plants is crucial to their safety evaluation. The instrumented indentation technique is a minimally invasive approach that can be conveniently used to determine the residual stress in structural materials in service. Because the indentation behavior of a structure with residual stresses is closely related to the elastic-plastic behavior of the indented material, an accurate understanding of the elastic-plastic behavior of the material is essential for evaluation of the residual stresses in the structures. However, due to the analytical problems associated with solving the elastic-plastic behavior, empirical equations with limited applicability have been used. In the present study, the impact of the non-equibiaxial residual stress state on indentation behavior was investigated using finite element analysis. In addition, a new nonequibiaxial residual-stress prediction methodology is proposed using a convolutional neural network, and the performance was validated. A more accurate residual-stress measurement will be possible by applying the proposed residual-stress prediction methodology in the future.

Keywords

Acknowledgement

This work was supported by the Ministry of Science and ICT and a National Research Foundation of Korea (NRF) grant funded by the Korean government (2021M2E4A1037979).

References

  1. R. Moharrami, M. Sanayei, Developing a method in measuring residual stress on steel alloys by instrumented indentation technique, Measurement 158 (2020), 107718, https://doi.org/10.1016/j.measurement.2020.107718.
  2. L. Xiao, D. Ye, C. Chen, A further study on representative models for calculating the residual stress based on the instrumented indentation technique, Comput. Mater. Sci. 82 (2014) 476-482, https://doi.org/10.1016/j.commatsci.2013.10.014.
  3. X. Liu, L. Cai, H. Chen, Residual stress indentation model based on material equivalence, Chin. J. Aeronaut. 35 (8) (2021) 304-313, https://doi.org/10.1016/j.cja.2022.01.025.
  4. Y.H. Lee, D. Kwon, Estimation of biaxial surface stress by instrumented indentation with sharp indenters, Acta Mater. 52 (2004) 1555-1563, https://doi.org/10.1016/j.actamat.2003.12.006.
  5. J. Jang, Estimation of residual stress by instrumented indentation: a review, J. Ceram. Process. Res. 10 (3) (2009) 391-400, https://doi.org/10.36410/jcpr.2009.10.3.391.
  6. X. Liu, L. Cai, H. Chn, Residual stress indentation model based on material equivalence, Chin. J. Aeronaut. 35 (8) (2022) 304-313. https://doi.org/10.1016/j.cja.2022.01.025
  7. H. Jin, W. Yang, L. Yan, Determination of residual stresses and material properties by an energy-based method using artificial neural networks, Proc. Est. Acad. Sci. 61 (4) (2012) 296-305, https://doi.org/10.3176/proc.2012.4.04.
  8. J. Kim, S. Choi, J. Lee, H. Ahn, Y. Kim, M. Choi, D. Kwon, An indentation method for evaluation of residual stress: estimation of stress-free indentation curve using stress-independent indentation parameters, J. Mater. Res. 34 (2019) 1103-1111, https://doi.org/10.1557/jmr.2018.492.
  9. K. Jeong, H. Lee, O. Kwon, J. Jung, D. Kwon, H. Han, Prediction of uniaxial tensile flow using finite element-based indentation and optimized artificial neural networks, Mater. Des. 196 (2020), 109104, https://doi.org/10.1016/j.matdes.2020.109104.
  10. P. Lasson, On the invariance of hardness at Vickers indentation of pre-stressed materials, Metals (2017), https://doi.org/10.3390/met70740260.
  11. Y. Cao, X. Qian, B. Huber, Spherical indentation into elastoplastic materials: indentation-response based definitions of the representative strain, Mater. Sci. Eng. 454-455 (2007) 1-13, https://doi.org/10.1016/j.msea.2007.01.002.
  12. N. Huber, C. Tsakmakis, Experimental and theoretical investigation of the effect of kinematic hardening on spherical indentation, Mech. Mater. 27 (1998) 241-248, https://doi.org/10.1016/S0167-6636(98)00005-2.
  13. E.-H. Lee, T.B. Stoughton, J.W. Yoon, A new strategy to describe nonlinear elastic and asymmetric plastic behaviors with one yield surface, Int. J. Plast. 98 (2017) 217-238. https://doi.org/10.1016/j.ijplas.2017.08.003
  14. E.-H. Lee, H. Choi, T.B. Stoughton, J.W. Yoon, Combined anisotropic and distortion hardening to describe directional response with Bauschinger effect, Int. J. Plast. 122 (2019) 73-88. https://doi.org/10.1016/j.ijplas.2019.07.007
  15. A.R. Hosseinzadeh, A.H. Mahmoudi, Measuring nonequibiaxial residual stress and mechanical properties using knop indentation, J. Test. Eval. 48 (2) (2020) 1365-1387, https://doi.org/10.1520/JTE20170730.
  16. S.S. Ghanbari, A.H. Mahmoudi, An improvement in data interpretation to estimate residual stresses and mechanical properties using instrumented indentation: a comparison between machine learning and Kriging model, Eng. Appl. Artif. Intell. 114 (2022), 105186.
  17. L. Lu, M. Dao, P. Kumar, U. Ramamurty, G.E. Kaniadakis, S. Suresh, Extraction of mechanical properties of materials through deep learning from instrumented indentation, Proc. Natl. Acad. Sci. USA 117 (13) (2020).
  18. Dassault, ABAQUS Version 2022. User's Manual, Dassault Systems Simulia, 2022.
  19. H. Sun, et al., Simultaneous identification of structural parameters and dynamic input with incomplete output-only measurements, Struct. Control Health Monit. 21 (6) (2014) 868-889, https://doi.org/10.1002/stc.1619.
  20. H. Sun, et al., A sweeping window method for detection of flaws using an explicit dynamic XFEM and absorbing boundary layers, Int. J. Numer. Methods Eng. 105 (2016) 1014-1040, https://doi.org/10.1002/nme.5006.
  21. N. Munir, et al., Performance enhancement of convolutional neural network for ultrasonic flaw classification by adopting autoencoder, NDT E Int. 111 (2020), 102218, https://doi.org/10.1016/j.ndteint.2020.102218.
  22. D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, ICLR (2015). https://arxiv.org/abs/1412.6980v9.