DOI QR코드

DOI QR Code

Stress evaluation method of reinforced wall-thinned Class 2/3 nuclear pipes for structural integrity assessment

  • Jae-Yoon Kim (Department of Mechanical Engineering, Korea University) ;
  • Je-Hoon Jang (Department of Mechanical Engineering, Korea University) ;
  • Jin-Ha Hwang (Department of Mechanical Engineering, Pukyong National University) ;
  • Yun-Jae Kim (Department of Mechanical Engineering, Korea University)
  • Received : 2023.03.07
  • Accepted : 2023.11.19
  • Published : 2024.04.25

Abstract

When wall-thinning occurs in nuclear Class 2 and 3 pipes, reinforcement is typically applied rather than replacement. To analyze the structural integrity of reinforced wall-thinned pipe, stress analysis results using full 3-D FE analysis are not compatible to the design code equation, ASME BPVC Sec. III NC/ND-3650. Therefore, the efficient stress evaluation method for the reinforced wall-thinned pipe, compatible to the design code equation, needs to be developed. In this paper, stress evaluation methods for the reinforced wall-thinned pipe are proposed using the equivalent straight pipe concept. Furthermore, for fatigue analysis of the reinforced wall-thinned pipe, the stress intensification factor of reinforced wall-thinned pipe is presented using the structural stress method given in ASME BPVC Sec. VIII Div.2.

Keywords

Acknowledgement

This work was supported by Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) (No. 20206510100030, Development of Repair Technology for Class 2, 3 Large Bore Piping in Operating Nuclear Power Plant).

References

  1. J.H. Lee, S.J. Lee, Application of laser-generated guided wave for evaluation of corrosion in carbon steel pipe, NDT&E Int. 42 (3) (2009) 222-227. https://doi:10.1016/j.ndteint.2008.09.011.
  2. H. Ahmed, Evaluation of the proximity effect on flow-accelerated corrosion, Ann. Nucl. Energy 37 (4) (2010) 598-605, https://doi.org/10.1016/j.anucene.2009.12.020.
  3. R. Francis, Galvanic corrosion of high alloy stainless steel in sea water, Br. Corrosion J. 29 (1) (1994) 53-57.
  4. S.H. Ahn, K.W. Nam, K. Takahashi, K. Ando, Comparison of experimental and finite element analytical results for the strength and the deformation of pipes with local wall thinning subjected to bending moment, Nucl. Eng. Des. 236 (2) (2006) 145-155, https://doi.org/10.1016/j.nucengdes.2005.07.010.
  5. J. Peng, C. Zhou, J. Xue, Q. Dai, X. He, Safety assessment of pipes with multiple local wall thinning defects under pressure and bending moment, Nucl. Eng. Des. 241 (8) (2011) 2758-2765, https://doi.org/10.1016/j.nucengdes.2011.06.030, 2011.
  6. M. Elchalakani, A. Karrech, H. Basarir, M.F. Hassanein, S. Fawzia, CFRP strengthening and rehabilitation of corroded steel pipelines under direct indentation, Thin-Walled Struct. 119 (2017) 510-521, https://doi.org/10.1016/j.tws.2017.06.013.
  7. H. Zarrinzadeh, M.Z. Kabir, A. Deylami, Crack growth and debonding analysis of an aluminum pipe repaired by composite patch under fatigue loading, Thin-Walled Struct. 112 (2017) 140-148, https://doi.org/10.1016/j.tws.2016.12.023.
  8. P.H. Chan, K.Y. Tshai, M. Johnson, H.L. Choo, S. Li, K. Zakaria, CFRP reinforcement and repair of steel pipe elbows subjected to sever cyclic loading, J. Pressure Vessel Technol. 139 (5) (2017), 051403, https://doi.org/10.1115/1.4037198.
  9. E. Mahdi, E. Eltai, Development of cost-effective composite repair system for oil/ gas pipelines, Comps. Struct. 202 (15) (2018) 802-806, https://doi.org/10.1016/j.compstruct.2018.04.025.
  10. ASME Section XI, Code Case N-786-3, Alternative Requirements for Sleeve Reinforcement of Class 2 and 3 Moderate-Energy Carbon Steel Piping for Raw Water Service, Am. Soc. of Mech. Eng., New York, USA, 2017.
  11. ASME Section XI Code Case N-789-3, Alternative Requirements for Pad Reinforcement of Class 2 and 3 Moderate-Energy Carbon Steel Piping, Am. Soc. of Mech. Eng., New York, USA, 2017.
  12. N.R.F. RohemL, J. Pacheco, S. Budhe, M.D. Banea, E.M. Sampaio, S. de Barros, Development and qualification of a new polymeric matrix laminated composite for pipe repair, Compos. Struct. 152 (15) (2016) 737-745, https://doi.org/10.1016/j.compstruct.2016.05.091.
  13. E. Mahdi, E. Eltai, Development of cost-effective composite repair system for oil/ gas pipelines, Compos. Struct. 202 (15) (2018) 802-806, https://doi.org/10.1016/j.compstruct.2018.04.025.
  14. K.S. Lim, S.N.A. Azraai, N. Yahaya, N.Md. Noor, L. Zardasti, J.H. Kim, Behaviour of steel pipelines with composite repairs analysed using experimental and numerical approaches, Thin-Walled Struct. 139 (2019) 321-333, https://doi.org/10.1016/j.tws.2019.03.023.
  15. M.F. Muda, M.H.M. Hashim, M.K. Kamarudin, M.H. Mohd, T. Tafsirojjanman, M. A. Rahman, J.K. Paik, Burst pressure strength of corroded subsea pipelines repaired with composite fiber-reinforced polymer patches, Eng. Fail. Anal. 136 (2022), 106204, https://doi.org/10.1016/j.engfailanal.2022.106204.
  16. P.G. Fazzini, J.L. Otegui, Influence of old rectangular repair patches on the burst pressure of a gas pipeline, Int. J. Pres. Ves. Pip. 83 (1) (2006) 27-34, https://doi.org/10.1016/j.ijpvp.2005.10.004.
  17. M. Shamsuddoha, M.M. Islam, T. Aravinthan, A. Manalo, K. Lau, Effectiveness of using fibre-reinforced polymer composites for underwater steel pipeline repairs, Compos. Struct. 100 (2013) 40-54, https://doi.org/10.1016/j.compstruct.2012.12.019.
  18. J.L. Otegui, A. Cisilino, A.E. Rivas, M. Chapetti, G. Soula, Influence of multiple sleeve repairs on the structural integrity of gas pipelines, Int. J. Pres. Ves. Pip. 79 (11) (2002) 759-765, https://doi.org/10.1016/S0308-0161(02)00063-7.
  19. ASME Boiler and Pressure Vessel Code, Section III, Rules for Construction of Nuclear Power Plant Components, American Society of Mechanical Engineers, 2015.
  20. J.S. Kim, J.H. Jang, Y.J. Kim, Efficient elastic stress analysis method for piping system with wall-thinning and reinforcement, Nucl. Eng. Des. 54 (2) (2022) 732-740, https://doi.org/10.1016/j.net.2021.08.026.
  21. J.H. Jang, J.S. Kim, Y.J. Kim, Analytical equivalent stiffness analysis for various reinforcements of wall-thinned pipe, Trans. of the KPVP 18 (1) (2022) 11-18, https://doi.org/10.20466/KPVP.202.18.1.011.
  22. ABAQUS Version, User's Manual, Dassault Systems, Inc., 2018, p. 2018.
  23. ASME Boiler and Pressure Vessel Code, Section VIII, Division 2, Rules for Construction of Pressure Vessels, American Society of Mechanical Engineers, Alternative Rules, 2015.
  24. P. Dong, A structural stress definition and numerical implementation for fatigue analysis of welded joints, Int. J. Fatig. 23 (10) (2001) 865-876, https://doi.org/10.1016/S0142-1123(01)00055-X.