DOI QR코드

DOI QR Code

Feasibility and performance limitations of Supercritical carbon dioxide direct-cycle micro modular reactors in primary frequency control scenarios

  • Seongmin Son (Department of Smart Plant Engineering, Kyungpook National University) ;
  • Jeong Ik Lee (Korea Advanced Institute of Science and Technology)
  • Received : 2023.07.11
  • Accepted : 2023.11.13
  • Published : 2024.04.25

Abstract

This study investigates the application of supercritical carbon dioxide (S-CO2) direct-cycle micro modular reactors (MMRs) in primary frequency control (PFC), which is a scenario characterized by significant load fluctuations that has received less attention compared to secondary load-following. Using a modified GAMMA + code and a deep neural network-based turbomachinery off-design model, the authors conducted an analysis to assess the behavior of the reactor core and fluid system under different PFC scenarios. The results indicate that the acceptable range for sudden relative electricity output (REO) fluctuations is approximately 20%p which aligns with the performance of combined-cycle gas turbines (CCGTs) and open-cycle gas turbines (OCGTs). In S-CO2 direct-cycle MMRs, the control of the core operates passively within the operational range by managing coolant density through inventory control. However, when PFC exceeds 35%p, system control failure is observed, suggesting the need for improved control strategies. These findings affirm the potential of S-CO2 direct-cycle MMRs in PFC operations, representing an advancement in the management of grid fluctuations while ensuring reliable and carbon-free power generation.

Keywords

Acknowledgement

This study was conducted with the support of the Kyungpook National University New Professor Support Project.

References

  1. Y. Ahn, S.J. Bae, M. Kim, S.K. Cho, S. Baik, J.I. Lee, J.E. Cha, Review of supercritical CO2 power cycle technology and current status of research and development, Nucl. Eng. Technol. 47 (6) (2015) 647-661. https://doi.org/10.1016/j.net.2015.06.009
  2. R. Petroski, E. Bates, B. Dionne, B. Johnson, A. Mieloszyk, C. Xu, P. Hejzlar, Design of a direct-cycle supercritical CO2 nuclear reactor with heavy water moderation, Nucl. Eng. Technol. 54 (3) (2022) 877-887. https://doi.org/10.1016/j.net.2021.09.030
  3. A. Yu, W. Su, X. Lin, N. Zhou, Recent trends of supercritical CO2 Brayton cycle: bibliometric analysis and research review, Nucl. Eng. Technol. 53 (3) (2021) 699-714. https://doi.org/10.1016/j.net.2020.08.005
  4. M. Marchionni, G. Bianchi, S.A. Tassou, Review of supercritical carbon dioxide (sCO 2) technologies for high-grade waste heat to power conversion, SN Appl. Sci. 2 (2020) 1-13. https://doi.org/10.1007/s42452-019-1685-8
  5. J. McHardy, T.B. Stanford, L.R. Benjamin, T.E. Whiting, S.C. Chao, Progress in supercritical CO2 cleaning, SAMPE J. 29 (5) (1993).
  6. C.L. Zhang, L. Yang, Modeling of Supercritical CO 2 Flow through Short Tube Orifices, 2005.
  7. E. Nonboel, Description of the Advanced Gas Cooled Type of Reactor (AGR), 1996.
  8. S.G. Kim, M.G. Kim, S.J. Bae, J.I. Lee, Preliminary design of S-CO2 Brayton cycle for KAIST micro modular reactor, in: Transactions of the Korean Nuclear Society Autumn Meeting, 2013, October.
  9. K. Wang, Y.L. He, H.H. Zhu, Integration between supercritical CO2 Brayton cycles and molten salt solar power towers: a review and a comprehensive comparison of different cycle layouts, Appl. Energy 195 (2017) 819-836. https://doi.org/10.1016/j.apenergy.2017.03.099
  10. A. Moisseytsev, J.J. Sienicki, Investigation of alternative layouts for the supercritical carbon dioxide Brayton cycle for a sodium-cooled fast reactor, Nucl. Eng. Des. 239 (7) (2009) 1362-1371. https://doi.org/10.1016/j.nucengdes.2009.03.017
  11. A.I. Kiryushin, N.G. Kodochigov, N.G. Kouzavkov, N.N. Ponomarev-Stepnoi, E. S. Gloushkov, V.N. Grebennik, Project of the GT-MHR high-temperature helium reactor with gas turbine, Nucl. Eng. Des. 173 (1-3) (1997) 119-129. https://doi.org/10.1016/S0029-5493(97)00099-X
  12. C.F. McDonald, Helium turbomachinery operating experience from gas turbine power plants and test facilities, Appl. Therm. Eng. 44 (2012) 108-142. https://doi.org/10.1016/j.applthermaleng.2012.02.041
  13. S. Son, J. Kwon, B.S. Oh, S.K. Cho, J.I. Lee, Radionuclide transport in a long-term operation supercritical CO2-cooled direct-cycle small nuclear reactor, Int. J. Energy Res. 44 (5) (2020) 3905-3921. https://doi.org/10.1002/er.5189
  14. S. Son, J.Y. Baek, Y. Jeong, J.I. Lee, Impact of turbomachinery degradation on performance and dynamic behavior of supercritical CO2 cycle, J. Eng. Gas Turbines Power 142 (9) (2020).
  15. A. Lokhov, Load-following with nuclear power plants, NEA News 29 (2) (2011) 18-20.
  16. X. Genglei, P. Minjun, D. Xue, Analysis of load-following characteristics for an integrated pressurized water reactor, Int. J. Energy Res. 38 (3) (2014) 380-390. https://doi.org/10.1002/er.3053
  17. A. Moisseytsev, K.P. Kulesza, J.J. Sienicki, Control System Options and Strategies for Supercritical CO2 Cycles (No. ANL-GENIV-081), Argonne National Lab.(ANL), Argonne, IL (United States), 2009.
  18. X. Wang, R. Wang, X. Bian, J. Cai, H. Tian, G. Shu, Z. Qin, Review of dynamic performance and control strategy of supercritical CO2 Brayton cycle, Energy and AI 5 (2021), 100078.
  19. OECD, NEA, Nuclear Energy and Renewables: System Effects in Low-Carbon Electricity Systems, Nuclear Energy Agency, 2012, pp. 127-128.
  20. Power System Reliability and Electricity Quality Maintenance Standards [(Korean) Ministry of Trade, Industry and Energy Notification No. 2015-112, 2015, 6.10., partially amended].
  21. S.G. Kim, H. Yu, J. Moon, S. Baik, Y. Kim, Y.H. Jeong, J.I. Lee, A concept design of supercritical CO2 cooled SMR operating at isolated microgrid region, Int. J. Energy Res. 41 (4) (2017) 512-525. https://doi.org/10.1002/er.3633
  22. Regulations on the use of electric facilities for transmission and distribution, standards for decentralized power distribution system connection technology [KEPCO Cyber Branch], https://cyber.kepco.co.kr/ckepco/front/jsp/CY/H/C/CYHCHP00802.jsp Retrieve in 2023.06.29.
  23. H. Yu, D. Hartanto, B.S. Oh, J.I. Lee, Y. Kim, Neutronics and transient analyses of a supercritical CO2-cooled micro modular reactor (MMR), Energy Proc. 131 (2017) 21-28. https://doi.org/10.1016/j.egypro.2017.09.441
  24. M.A. Pope, J.I. Lee, P. Hejzlar, M.J. Driscoll, Thermal hydraulic challenges of gas cooled fast reactors with passive safety features, Nucl. Eng. Des. 239 (5) (2009) 840-854. https://doi.org/10.1016/j.nucengdes.2008.10.023
  25. Christopher S. Handwerk, Michael J. Driscoll, Hejzlar Pavel, Optimized core design of a supercritical carbon dioxide-cooled fast reactor, Nucl. Technol. 164 (2008) 320-336, 3. https://doi.org/10.13182/NT08-A4030
  26. S.A. Wright, R.F. Radel, T.M. Conboy, G.E. Rochau, Modeling and Experimental Results for Condensing Supercritical CO2 Power Cycles, Sandia Report, Jan, 2011.
  27. B.S. Oh, Safety analysis and development of control logic of KAIST Micro Modular Reactor with GAMMA+ code, Master Thesis, KAIST (2017).
  28. H.S. Lim, H.C. No, GAMMA multidimensional multicomponent mixture analysis to predict air ingress phenomena in an HTGR, Nucl. Sci. Eng. 152 (1) (2006) 87-97. https://doi.org/10.13182/NSE06-5
  29. E.W. Lemmon, M.L. Huber, M.O. McLinden, NIST Standard Reference Database 23, Reference Fluid Thermodynamic and Transport Properties (REFPROP), Version 9.0, National Institute of Standards and Technology, 2010. R1234yf. fld file dated December, 22.
  30. R. Span, W. Wagner, A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa, J. Phys. Chem. Ref. Data 25 (6) (1996) 1509-1596. https://doi.org/10.1063/1.555991
  31. S. Baik, S.G. Kim, J. Lee, J.I. Lee, Study on CO2-water printed circuit heat exchanger performance operating under various CO2 phases for S-CO2 power cycle application, Appl. Therm. Eng. 113 (2017) 1536-1546. https://doi.org/10.1016/j.applthermaleng.2016.11.132
  32. J. Floyd, N. Alpy, A. Moisseytsev, D. Haubensack, G. Rodriguez, J. Sienicki, G. Avakian, A numerical investigation of the sCO2 recompression cycle off-design behaviour, coupled to a sodium cooled fast reactor, for seasonal variation in the heat sink temperature, Nucl. Eng. Des. 260 (2013) 78-92. https://doi.org/10.1016/j.nucengdes.2013.03.024
  33. A. Moisseytsev, J.J. Sienicki, Development of a Plant Dynamics Computer Code for Analysis of a Supercritical Carbon Dioxide Brayton Cycle Energy Converter Coupled to a Natural Circulation Lead-Cooled Fast Reactor, Argonne National Laboratory (ANL), Argonne, IL, 2007. No. ANL-06/27.
  34. S. Son, Y. Jeong, S.K. Cho, J.I. Lee, Development of supercritical CO2 turbomachinery off-design model using 1D mean-line method and Deep Neural Network, Appl. Energy 263 (2020), 114645.
  35. S.K. Cho, Study on Supercritical CO2 Radial Turbine Design Methodology for Decay Heat Removal System of Sodium Cooled Fast Reactor, Master thesis, 2016.
  36. D.P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization, 2014 arXiv preprint arXiv:1412.6980.
  37. J.G. Ziegler, N.B. Nichols, Optimum settings for automatic controllers, trans. ASME 64 (11) (1942).
  38. OECD, Technical and Economic Aspects of Load Following with Nuclear Power Plants, OECD Publishing, 2021.