DOI QR코드

DOI QR Code

Design and dynamic simulation of a molten salt THS coupled to SFR

  • Received : 2023.06.07
  • Accepted : 2023.11.08
  • Published : 2024.04.25

Abstract

With the increasing ratio of renewables in the grid, a low-carbon and stable base load source that also is capable of load tracking is in demand. Sodium cooled fast reactors (SFRs) coupled to thermal heat storage system (THS) is a strong candidate for the need. This research focuses on the designing and performance validation of a two-tank THS based on molten salt to integrate with a 280 MWth sodium cooled fast reactor. Designing of the THS includes the vital component, sodium-to-salt heat exchanger which is a technology gap that needs to be filled, and designing and parameter selection of the tanks and related pumps. Modeling of the designed THS is conducted followed by the description of operation strategies and control logics of the THS. Finally, the dynamic simulation of the designed THS is conducted based on Fortran. Results show, the proposed power system meets the need of the design requirements to store heat for 18 h during a day and provide 500 MWth for peak demand for the rest of the day.

Keywords

Acknowledgement

This research is founded by the China Institute of Atomic Energy Young Talent Found (Project No. 22054).

References

  1. J.B. Droin, D. Haubensack, D. Barbier, L. Brissonneau, P. Dienot, Two-tanks heat storage for variable electricity production in SFR: preliminary architecture and transient results, in: ICAPP 2019 -International Congress on Advances in Nuclear Power Plants, Juan Les Pins, France, 2019. https://hal-cea.archives-ouvertes.fr/cea-02394093.
  2. J. Guidez, L. Martin, Review of the Experience with Worldwide Fast Sodium Reactor Operation and Application to Future Reactor Design https://www-pub.iaea.org/MTCD/publications/PDF/P1360_ICRR_2007_CD/Papers/J.%20Guidez.pdf.
  3. TerraPower, The Natriumtm plant in Wyoming what makes it different from conventional nuclear plants?". https://www.NatriumPower.com.
  4. https://www.jaea.go.jp/04/sefard/.
  5. Salvatore Guccione, Design and Optimization of a Sodium Molten Salt Heat Exchanger for Concentrating Solar Power Applications, KTH ROYAL INSTITUTE OF TECHNOLOGY, 2020.
  6. C. Abel, Integrating Thermal Energy Storage and Nuclear Reactors: a Technical and Policy Study, A Dissertation Presented to The Academic Faculty, 2018. https://creativecommons.org/licenses/by/4.0/deed.en_US.
  7. Q. Yu, X. Li, Z. Wang, Q. Zhang, Modeling and dynamic simulation of thermal energy storage system for concentrating solar power plant, Energy 198 (2020), 117183.
  8. D.A. Csejka, D.E. Audette, J.E. Schingh, The interaction of elemental sodium with molten NaNO3-KNO3 at 873 K, J. Mater. Eng. 11 (1989) 291-297. https://doi.org/10.1007/BF02834139
  9. Y. Grosu, A. Anagnostopoulos, B. Balakin, J. Krupanek, M. Navarro, L. Gonz'alez-Fern'andez, Y. Ding, A. Faik, Nanofluids based on molten carbonate salts for high-temperature thermal energy storage: thermophysical properties, stability, compatibility and life cycle analysis, Sol. Energy Mater. Sol. Cells 220 (2021), 110838.
  10. C. Forsberg, P. Sabharwall, H.D. Gougar, Heat Storage Coupled to Generation IV Reactors for Variable Electricity from Base-Load Reactors: Workshop Proceedings: Changing Markets, Technology, Nuclear-Renewables Integration and Synergisms with Solar Thermal Power Systems, 2019 [Online]. Available: http://www.inl.gov.
  11. S. Ushak, A.G. Fernandez, M. Grageda, Using molten salts and other liquid sensible storage media in thermal energy storage (TES) systems, Adv. Therma. Energy Storage Syst.: Method. Appl. (2015) 49-63.
  12. K. Federsel, J. Wortmann, M. Ladenberger, High-temperature and corrosion behavior of nitrate nitrite molten salt mixtures regarding their application in concentrating solar power plants, Energy Proc. 69 (2015) 618-625. https://doi.org/10.1016/j.egypro.2015.03.071
  13. M. Sarvghad, T.C. Ong, S. Bell, R. Rumman, S.D. Maher, J.W. Woodcock, G. Will, G. Andersson, D.A. Lewis, T.A. Steinberg, On the compatibility of liquid sodium as heat transfer fluid for advanced concentrated solar thermal energy systems, Sol. Energy Mater. Sol. Cells 246 (2022), 111897.
  14. A.E. Waltar, D.R. Todd, P.V. Tsvetkov, Fast Spectrum Reactors, Springer, 2012.
  15. H. Kim, J. Yoon, H.Y. Lee, J. Eoh, J.Y. Jeong, J. Lee, Design and thermal-hydraulic evaluation of the finned-tube type sodium-to-air heat exchanger in sodium test facility, Nucl. Eng. Des. 366 (2020), 110755.
  16. G. Peiro, C. Prieto, J. Gasia, A. Jove, L. Miro, L.F. Cabeza, Two-tank molten salts thermal energy storage system for solar power plants at pilot plant scale: lessons learnt and recommendations for its design, start-up and operation, Renew. Energy 121 (2018) 236-248. https://doi.org/10.1016/j.renene.2018.01.026
  17. R.K. Sinnott, Coulson & Richardson's Chemical Engineering: Chemical Engineering Design, third ed., vol. 6, 1999.
  18. C.E. Drake, J.R. Carp, Shell and tube heat exchangers, Chem. Eng. (1960) 165-170.
  19. Fink JK and Leibowitz L, Thermodynamic and Transport Properties of Sodium Liquid and Vapor.
  20. M. Abutayeh, Modeling Dual-Tank Molten Salt Thermal Energy Storage Systems, ASME International Mechanical Engineering Congress & Exposition, 2014, in: http://asmedigitalcollection.asme.org/IMECE/proceedings-pdf/IMECE2014/46521/V06BT07A045/4267091/v06bt07a045-imece2014-36193.pdf.
  21. F.P. Incropera, David P. De Witt, Fundamentals of Heat and Mass Transfer, fourth ed., 1996.
  22. S.M. Yang, W.Q. Tao, Heat Transfer, fourth ed., 2006. Beijing.
  23. International Project on Innovative Nuclear Reactors and Fuel Cycles. And International Atomic Energy Agency, Challenges Related to the Use of Liquid Metal and Molten Salt Coolants in Advanced Reactors : Report of the Collaborative Project COOL of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO).
  24. H. Zhao, Design and Implementation of 100 MW of molten salt solar-thermal power tower systems in Yu men city, Gan su province, North China Electric Power University, 2017.
  25. H. Akimoto, Y. Anoda, K. Takase, Nuclear Thermal Hydraulics, Springer, Tokyo, 2016.
  26. W.Q. Tao, Numerical Heat Transfer, second ed., Xi'an Jiaotong University Press, 2001.