Acknowledgement
This research is founded by the China Institute of Atomic Energy Young Talent Found (Project No. 22054).
References
- J.B. Droin, D. Haubensack, D. Barbier, L. Brissonneau, P. Dienot, Two-tanks heat storage for variable electricity production in SFR: preliminary architecture and transient results, in: ICAPP 2019 -International Congress on Advances in Nuclear Power Plants, Juan Les Pins, France, 2019. https://hal-cea.archives-ouvertes.fr/cea-02394093.
- J. Guidez, L. Martin, Review of the Experience with Worldwide Fast Sodium Reactor Operation and Application to Future Reactor Design https://www-pub.iaea.org/MTCD/publications/PDF/P1360_ICRR_2007_CD/Papers/J.%20Guidez.pdf.
- TerraPower, The Natriumtm plant in Wyoming what makes it different from conventional nuclear plants?". https://www.NatriumPower.com.
- https://www.jaea.go.jp/04/sefard/.
- Salvatore Guccione, Design and Optimization of a Sodium Molten Salt Heat Exchanger for Concentrating Solar Power Applications, KTH ROYAL INSTITUTE OF TECHNOLOGY, 2020.
- C. Abel, Integrating Thermal Energy Storage and Nuclear Reactors: a Technical and Policy Study, A Dissertation Presented to The Academic Faculty, 2018. https://creativecommons.org/licenses/by/4.0/deed.en_US.
- Q. Yu, X. Li, Z. Wang, Q. Zhang, Modeling and dynamic simulation of thermal energy storage system for concentrating solar power plant, Energy 198 (2020), 117183.
- D.A. Csejka, D.E. Audette, J.E. Schingh, The interaction of elemental sodium with molten NaNO3-KNO3 at 873 K, J. Mater. Eng. 11 (1989) 291-297. https://doi.org/10.1007/BF02834139
- Y. Grosu, A. Anagnostopoulos, B. Balakin, J. Krupanek, M. Navarro, L. Gonz'alez-Fern'andez, Y. Ding, A. Faik, Nanofluids based on molten carbonate salts for high-temperature thermal energy storage: thermophysical properties, stability, compatibility and life cycle analysis, Sol. Energy Mater. Sol. Cells 220 (2021), 110838.
- C. Forsberg, P. Sabharwall, H.D. Gougar, Heat Storage Coupled to Generation IV Reactors for Variable Electricity from Base-Load Reactors: Workshop Proceedings: Changing Markets, Technology, Nuclear-Renewables Integration and Synergisms with Solar Thermal Power Systems, 2019 [Online]. Available: http://www.inl.gov.
- S. Ushak, A.G. Fernandez, M. Grageda, Using molten salts and other liquid sensible storage media in thermal energy storage (TES) systems, Adv. Therma. Energy Storage Syst.: Method. Appl. (2015) 49-63.
- K. Federsel, J. Wortmann, M. Ladenberger, High-temperature and corrosion behavior of nitrate nitrite molten salt mixtures regarding their application in concentrating solar power plants, Energy Proc. 69 (2015) 618-625. https://doi.org/10.1016/j.egypro.2015.03.071
- M. Sarvghad, T.C. Ong, S. Bell, R. Rumman, S.D. Maher, J.W. Woodcock, G. Will, G. Andersson, D.A. Lewis, T.A. Steinberg, On the compatibility of liquid sodium as heat transfer fluid for advanced concentrated solar thermal energy systems, Sol. Energy Mater. Sol. Cells 246 (2022), 111897.
- A.E. Waltar, D.R. Todd, P.V. Tsvetkov, Fast Spectrum Reactors, Springer, 2012.
- H. Kim, J. Yoon, H.Y. Lee, J. Eoh, J.Y. Jeong, J. Lee, Design and thermal-hydraulic evaluation of the finned-tube type sodium-to-air heat exchanger in sodium test facility, Nucl. Eng. Des. 366 (2020), 110755.
- G. Peiro, C. Prieto, J. Gasia, A. Jove, L. Miro, L.F. Cabeza, Two-tank molten salts thermal energy storage system for solar power plants at pilot plant scale: lessons learnt and recommendations for its design, start-up and operation, Renew. Energy 121 (2018) 236-248. https://doi.org/10.1016/j.renene.2018.01.026
- R.K. Sinnott, Coulson & Richardson's Chemical Engineering: Chemical Engineering Design, third ed., vol. 6, 1999.
- C.E. Drake, J.R. Carp, Shell and tube heat exchangers, Chem. Eng. (1960) 165-170.
- Fink JK and Leibowitz L, Thermodynamic and Transport Properties of Sodium Liquid and Vapor.
- M. Abutayeh, Modeling Dual-Tank Molten Salt Thermal Energy Storage Systems, ASME International Mechanical Engineering Congress & Exposition, 2014, in: http://asmedigitalcollection.asme.org/IMECE/proceedings-pdf/IMECE2014/46521/V06BT07A045/4267091/v06bt07a045-imece2014-36193.pdf.
- F.P. Incropera, David P. De Witt, Fundamentals of Heat and Mass Transfer, fourth ed., 1996.
- S.M. Yang, W.Q. Tao, Heat Transfer, fourth ed., 2006. Beijing.
- International Project on Innovative Nuclear Reactors and Fuel Cycles. And International Atomic Energy Agency, Challenges Related to the Use of Liquid Metal and Molten Salt Coolants in Advanced Reactors : Report of the Collaborative Project COOL of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO).
- H. Zhao, Design and Implementation of 100 MW of molten salt solar-thermal power tower systems in Yu men city, Gan su province, North China Electric Power University, 2017.
- H. Akimoto, Y. Anoda, K. Takase, Nuclear Thermal Hydraulics, Springer, Tokyo, 2016.
- W.Q. Tao, Numerical Heat Transfer, second ed., Xi'an Jiaotong University Press, 2001.