DOI QR코드

DOI QR Code

Rare earth removal from pyroprocessing fuel product for preparing MSR fuel

  • Received : 2023.06.26
  • Accepted : 2023.12.10
  • Published : 2024.03.25

Abstract

A series of experiments were performed to produce a fuel source for a molten salt reactor (MSR) through pyroprocessing technology. A simulated LiCl-KCl-UCl3-NdCl3 salt system was prepared, and the U element was fully recovered using a liquid cadmium cathode (LCC) by applying a constant current. As a result, the salt was purified with an UCl3 concentration lower than 100 ppm. Subsequently, the U/RE ingot was prepared by melting U and RE metals in Y2O3 crucible at 1473 K as a surrogate for RE-rich ingot product from pyroprocessing. The produced ingot was sliced and used as a working electrode in LiCl-KCl-LaCl3 salt. Only RE elements were then anodically dissolved by applying potential at - 1.7 V versus Ag/AgCl reference electrode. The RE-removed ingot product was used to produce UCl3 via the reaction with NH4Cl in a sealed reactor.

Keywords

Acknowledgement

This work was supported by a National Research Foundation of Korea grant funded by the Korea Government (Ministry of Science and ICT) [Grant Number RS-2023-00261146 and RS-2022-00155169].

References

  1. O. Benes, R.J.M. Konings, Actinide burner fuel: potential compositions based on the thermodynamic evaluation of MF-PuF3 (M = Li, Na, K, Rb, Cs) and LaF3-PuF3 systems, J. Nucl. Mater. 377 (2008) 449-457. https://doi.org/10.1016/j.jnucmat.2008.04.004
  2. D.E. Holcomb, G.F. Flanagan, B.W. Patton, J.C. Gehin, R.L. Howard, T.J. Harrison, Fast Spectrum Molten Salt Reactor Options, 2011. ORNL/TM-2011/105.
  3. A. Mourogov, P.M. Bokov, Potentialities of the fast spectrum molten salt reactor concept: REBUS-3700, Energy Convers. Manag. 47 (2006) 2761-2771. https://doi.org/10.1016/j.enconman.2006.02.013
  4. L.G. Alexander, Molten-Salt Fast Reactors in Proceedings of Breeding Large Fast Reactors, 1963. ANL-6792.
  5. M. Taube, J. Ligou, Molten plutonium chloride fast breeder reactor cooled by molten uranium chloride, Ann. Nucl. Sci. Eng. 1 (1974) 277-281. https://doi.org/10.1016/0302-2927(74)90045-2
  6. J. Serp, M. Allibert, O. Benes, S. Delpech, O. Feynberg, V. Ghetta, D. Heuer, D. Holcomb, V. Ignatiev, J.L. Kloosterman, L. Luzzi, E. Merle-Lucotte, J. Uhlir, R. Yoshioka, D. Zhimin, The molten salt reactor (MSR) in generation IV: overview and perspectives, Prog. Nucl. Energy 77 (2014) 308-319. https://doi.org/10.1016/j.pnucene.2014.02.014
  7. B. Mignacca, G. Locatelli, Economics and finance of molten salt reactors, Prog. Nucl. Energy 129 (2020), 103503.
  8. A.A. Kasam, "Conceptual Design of a Breed&burn Molten Salt Reactor", PhD Dissertation, Churchill College, 2018.
  9. J.P. Ackerman, Chemical basis for pyrochemical reprocessing of nuclear fuel, Ind. Eng. Chem. Res. 30 (1991) 141-145. https://doi.org/10.1021/ie00049a022
  10. C.E. Till, Y.I. Chang, Plentiful Energy - the Story of the Integral Fast Reactor, 2011, 978-1466384606.
  11. E. Choi, S. Jeong, Electrochemical processing of spent nuclear fuels: an overview of oxide reduction in pyroprocessing technology, Prog. Nat. Sci.: Mater. Int. 25 (2015) 572-582. https://doi.org/10.1016/j.pnsc.2015.11.001
  12. J.P. Ackerman, J.L. Settle, Distribution of plutonium, americium, and several rare earth fission product elements between liquid cadmium and LiC1-KC1 eutectic, J. Alloys Compd. 199 (1993) 77-84. https://doi.org/10.1016/0925-8388(93)90430-U
  13. M. Kurata, Y. Sakamura, T. Hijikata, K. Kinoshita, Distribution behavior of uranium, neptunium, rare-earth elements (Y, La, Ce, Nd, Sm, Eu, Gd) and alkaline-earth metals (Sr,Ba) between molten LiC1-KC1eutectic salt and liquid cadmium or bismuth, J. Nucl. Mater. 227 (1995) 110-121. https://doi.org/10.1016/0022-3115(95)00146-8
  14. K. Kinoshita, T. Inoue, S.P. Fusselman, D.L. Grimmett, J.J. Roy, R.L. Gay, C. L. Krueger, C.R. Nabelek, T.S. Storvick, Separation of uranium and transuranic elements from rare earth elements by means of multistage extraction in LiCl-KCl/Bi system, J. Nucl. Sci. Technol. 36 (1999) 189-197. https://doi.org/10.1080/18811248.1999.9726197
  15. K. Kinoshita, T. Tsukada, Countercurrent extraction test with continuous flow of molten LiCl-KCl salt and liquid Cd for pyro- reprocessing of metal FBR fuel, J. Nucl. Sci. Technol. 47 (2010) 211-218. https://doi.org/10.1080/18811248.2010.9711947
  16. O. Shirai, H. Yamana, Y. Arai, Electrochemical behavior of actinides and actinide nitrides in LiCl-KCl eutectic melts, J. Alloys Compd. 408-412 (2006) 1267-1273. https://doi.org/10.1016/j.jallcom.2005.04.119
  17. Y. Sakamura, T. Hijikata, K. Kinoshita, T. Inoue, T.S. Storvick, C.L. Krueger, J. J. Roy, D.L. Grimmett, S.P. Fusselman, R.L. Gay, Measurement of standard potentials of actinides (U,Np,Pu,Am) in LiCl-KCl eutectic salt and separation of actinides from rare earths by electrorefining, J. Alloys Compd. 271-273 (1998), 592-586.
  18. D. Yoon, S. Paek, C. Lee, Chlorination of uranium metal to uranium trichloride using ammonium chloride, J. Radioanal. Nucl. Chem. 331 (2022) 2209-2216. https://doi.org/10.1007/s10967-022-08285-2
  19. A. Roine, HSC Chemistry Software, 2021 (version 10.0.6.7). Outotec Pori software available at: www.outotec.com/HSC.