DOI QR코드

DOI QR Code

Experimental and numerical assessment of helium bubble lift during natural circulation for passive molten salt fast reactor

  • Won Jun Choi (Department of Nuclear Engineering, Hanyang University) ;
  • Jae Hyung Park (Department of Nuclear Engineering, Hanyang University) ;
  • Juhyeong Lee (Department of Nuclear Engineering, Hanyang University) ;
  • Jihun Im (Department of Nuclear Engineering, Hanyang University) ;
  • Yunsik Cho (Department of Nuclear Engineering, Hanyang University) ;
  • Yonghee Kim (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology) ;
  • Sung Joong Kim (Department of Nuclear Engineering, Hanyang University)
  • Received : 2023.06.29
  • Accepted : 2023.12.04
  • Published : 2024.03.25

Abstract

To remove insoluble fission products, which could possibly cause reactor instability and significantly reduce heat transfer efficiency from primary system of molten salt reactor, a helium bubbling method is employed into a passive molten salt fast reactor. In this regard, two-phase flow behavior of molten salt and helium bubbles was investigated experimentally because the helium bubbles highly affect the circulation performance of working fluid owing to an additional drag force. As the helium flow rate is controlled, the change of key thermal-hydraulic parameters was analyzed through a two-phase experiment. Simultaneously, to assess the applicability of numerical model for the analysis of two-phase flow behavior, the numerical calculation was performed using the OpenFOAM 9.0 code. The accuracy of the numerical analysis code was evaluated by comparing it with the experimental data. Generally, numerical results showed a good agreement with the experiment. However, at the high helium injection rates, the prediction capability for void fraction of helium bubbles was relatively low. This study suggests that the multiphaseEulerFoam solver in OpenFOAM code is effective for predicting the helium bubbling but there exists a room for further improvement by incorporating the appropriate drag flux model and the population balance equation.

Keywords

Acknowledgement

This research was supported by the National Research Foundation of Korea (NRF) and funded by the ministry of Science, ICT, and Future Planning, Republic of Korea (grant numbers NRF-2021M2D2A2076382). Additionally, this work was also supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (RS-2023-00261295).

References

  1. M.W. Rosenthal, P.R. Kasten, R.B. Briggs, Molten-salt reactors-history, status, and potential, Nucl. Appl. Technol. 8 (1970) 107-117. 
  2. J. Serp, M. Allibert, O. Benes, S. Delpech, O. Feynberg, V. Ghetta, D. Heuer, D. Holcomb, V. Ignatiev, J.L. Kloosterman, L. Luzzi, E. Merle-Lucotte, J. Uhlir, R. Yoshioka, D. Zhimin, The molten salt reactor (MSR) in generation IV: overview and perspectives, Prog. Nucl. Energy 77 (2014) 308-319. 
  3. P.N. Haubenreich, J. Engel, Experience with the molten-salt reactor experiment, Nucl. Appl. Technol. 8 (2) (1970) 118-136. 
  4. D. Zhang, S. Qiu, G. Su, C. Liu, L. Qian, Analysis on the neutron kinetics for a molten salt reactor, Prog. Nucl. Energy 51 (4-5) (2009) 624-636. 
  5. C. Fiorina, Impact of the volume heat source on the RANS-based CFD analysis of Molten Salt Reactors, Ann. Nucl. Energy 134 (2019) 376-382. 
  6. A.M. Wheeler, V. Singh, L.F. Miller, O. Chvala, Initial calculations for source term of molten salt reactors, Prog. Nucl. Energy 132 (2021), 103616. 
  7. F. Gelbard, B.A. Beeny, L.L. Humphries, K.C. Wagner, L.I. Albright, M. Poschmann, M.H. Piro, Application of MELCOR for simulating molten salt reactor accident source terms, Nucl. Sci. Eng. (2023) 1-19. 
  8. H. Kim, C. Kwon, S. Ham, J. Lee, S.J. Kim, S. Kim, Physical properties of KCl-UCl3 molten salts as potential fuels for molten salt reactors, J. Nucl. Mater. 577 (2023), 154329. 
  9. J.H. Park, W. Choi, J. Lim, T. Kim, Y. Kim, Y. Yoon, S. Kim, S.J. Kim, Design concepts and requirements of passive molten salt fast reactor (PMFR), in: Transactions of the Korean Nuclear Society Spring Meeting, Jeju, Korea, 2022. 
  10. C.W. Forsberg, Molten salt reactors (MSRs), in: The Americas Nuclear Energy Symposium (ANES), American Nuclear Society, Miami, Florida, 2002. 
  11. D.E. Holcomb, W.P. Poore III, G.F. Flanagan, MSR Fuel Salt Qualification Methodology, Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States), 2020. 
  12. S.A. Walker, W. Ji, Species transport analysis of noble metal fission product transport, deposition, and extraction in the molten salt reactor experiment, Ann. Nucl. Energy 158 (2021), 108250. 
  13. D. Holcomb, G. Flanagan, B. Patton, J. Gehin, R. Howard, T. Harrison, Fast Spectrum Molten Salt Reactor Options, Oak Ridge National Laboratory/TM-2011/105, 2011. 
  14. D. Journ'ee, Helium Bubbling in a Molten Salt Fast Reactor, TU delft, Master Of Science Thesis, Delft, 2014, pp. 7-12. 
  15. C. Gabbard, Development of a Venturi Type Bubble Generator for Use in the Molten-Salt Reactor Xenon Removal System, Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States), 1972. 
  16. F. Peebles, Removal of Xenon-135 from Circulating Fuel Salt of the MSBR by Mass Transfer to Helium Bubbles, Oak Ridge National Laboratory, Oak Ridge, TN, 1968, p. 14. Report No. ORNL-TM-2245. 
  17. R. Kedl, Migration of a Class of Fission Products (Noble Metals) in the Molten-Salt Reactor Experiment, Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States), 1972. 
  18. E. Cervi, S. Lorenzi, A. Cammi, L. Luzzi, An Euler-Euler multi-physics solver for the analysis of the helium bubbling system in the MSFR, in: NENE 2017 26th International Conference Nuclear Energy for New Europe, Bled, Slovenia, 2017. 
  19. Z. Taylor, R. Salko, A.M. Graham, B.S. Collins, G.I. Maldonado, Implementation of two-phase gas transport into VERA for molten salt reactor analysis, Ann. Nucl. Energy 165 (2022), 108672. 
  20. F. Caruggi, A. Cammi, E. Cervi, A. Di Ronco, S. Lorenzi, Multiphysics modelling of gaseous fission products in the molten salt fast reactor, Nucl. Eng. Des. 392 (2022), 111762. 
  21. H. Mochizuki, Study on start-up of molten salt fast modular reactor from shutdown based on two-phase flow CFD analysis, Nucl. Eng. Des. 414 (2023), 112560. 
  22. D.E. Chavez, S.R. Yang, R. Vaghetto, Y.A. Hassan, Experimental investigation of single helium bubbles rising in FLiNaK molten salt, Int. J. Heat Fluid Flow 92 (2021), 108875. 
  23. J. Lim, D. Shin, T. Kim, J. Park, J. Lee, Y. Cho, Y. Kim, S. Kim, S. Kim, Preliminary analysis of the effect of the gas injection on natural circulation for molten salt reactor type small modular reactor system operated without a pump, in: Transactions of the Korean Nuclear Society Autumn Meeting, Changwon, Korea, 2021. 
  24. P. Shankar, M. Kumar, Experimental determination of the kinematic viscosity of glycerol-water mixtures, Proc. R. Soc. Lond. A Math. Phys. Sci. 444 (1922) 573-581, 1994. 
  25. S. Katyshev, Y.F. Chervinskii, V. Desyatnik, Density and viscosity of fused mixtures of uranium chlorides and potassium chloride, Sov. At. Energy. 53 (1982) 565-566. 
  26. V.N. Desyatnik, S.F. Katyshev, S.P. Raspopin, Y.F. Chervinskii, Density, surface tension, and viscosity of uranium trichloride-sodium chloride melts, Sov. At. Energy. 39 (1975) 649-651. 
  27. A.G. Livingston, S.F. Zhang, Hydrodynamic behaviour of three-phase (gas-liquid-solid) airlift reactors, Chem. Eng. Sci. 48 (1993) 1641-1654. 
  28. E. Burlutskii, R. Di Felice, Experimental and numerical study of two-phase flow mixing in gas-liquid external-loop airlift reactor, Int. J. Multiphas. Flow 119 (2019) 1-13. 
  29. A.J. Ghajar, C.C. Tang, Advances in void fraction, flow pattern maps and non-boiling heat transfer two-phase flow in pipes with various inclinations, Adv. Multiphase Flow Heat Transf. 1 (2009) 1-52. 
  30. S.M. Bhagwat, Study of Flow Patterns and Void Fraction in Vertical Downward Two Phase Flow. Degree of Master of SCIENCE, Oklahoma State University, 2011. 
  31. M.A. Woldesemayat, A.J. Ghajar, Comparison of void fraction correlations for different flow patterns in horizontal and upward inclined pipes, Int. J. Multiphas. Flow 33 (2007) 347-370. 
  32. I.B. Celik, U. Ghia, P.J. Roache, C.J. Freitas, Procedure for estimation and reporting of uncertainty due to discretization in CFD applications, Journal of fluids Engineering-Transactions of the ASME 130 (7) (2008). 
  33. G. Chen, Q. Xiong, P.J. Morris, E.G. Paterson, A. Sergeev, Y. Wang, OpenFOAM for computational fluid dynamics, Not. AMS 61 (2014) 354-363. 
  34. V. Oruganti, H. Grimler, E. Ghahramani, Implementation of cavitation models into the multiphaseEulerFoam solver, in: Proc. Of CFD with OpenSource Software, 2017. 
  35. D.A. Lysenko, I.S. Ertesvag, K.E. Rian, Large-eddy simulation of the flow over a circular cylinder at Reynolds number 3900 using the OpenFOAM toolbox, Flow Turbul, Combust 89 (2012) 491-518. 
  36. B. Niceno, M. Dhotre, N. Deen, One-equation sub-grid scale (SGS) modelling for Euler-Euler large eddy simulation (EELES) of dispersed bubbly flow, Chem. Eng. Sci. 63 (15) (2008) 3923-3931. 
  37. B. Van Leer, Towards the ultimate conservative difference scheme, J. Comput. Phys. 135 (2) (1997) 229-248. 
  38. J. Cheng, Q. Li, C. Yang, Y. Zhang, Z. Mao, CFD-PBE simulation of a bubble column in OpenFOAM, Chin. J. Chem. Eng. 26 (2018) 1773-1784. 
  39. X. Guan, X. Li, N. Yang, M. Liu, CFD simulation of gas-liquid flow in stirred tanks: effect of drag models, Chem. Eng. J. 386 (2020), 121554. 
  40. V. Kannan, P.R. Naren, V.V. Buwa, A. Dutta, Effect of drag correlation and bubble-induced turbulence closure on the gas hold-up in a bubble column reactor, J. Chem. Technol. Biotechnol. 94 (2019) 2944-2954. 
  41. S. Radman, C. Fiorina, A. Pautz, Development of a novel two-phase flow solver for nuclear reactor analysis: algorithms, verification and implementation in OpenFOAM, Nucl. Eng. Des. 379 (2021), 111178. 
  42. C. Lu, R. Kong, S. Qiao, J. Larimer, S. Kim, S. Bajorek, K. Tien, C. Hoxie, Frictional pressure drop analysis for horizontal and vertical air-water two-phase flows in different pipe sizes, Nucl. Eng. Des. 332 (2018) 147-161. 
  43. X.-F. Liang, H. Pan, Y.-H. Su, Z.-H. Luo, CFD-PBM approach with modified drag model for the gas-liquid flow in a bubble column, Chem. Eng. Res. Des. 112 (2016) 88-102.