Acknowledgement
This study was partly supported by the Nuclear Safety Research Program through the Korea Foundation of Nuclear Safety (KOFONS) under a grant from the Nuclear Safety and Security Commission (NSSC) (Grant No. 210621) and Korea Atomic Energy Research Institute (KAERI, 524510-23).
References
- R. Salko, M. Avramova, CTF Theory Manual, Pennsylvania State University, 2014.
- H. Kwon, et al., "Validation of a Subchannel Analysis Code MATRA Version 1.1," KAERI/TR-5581/2014, Korea Atomic Energy Research Institute, 2014.
- J.P. Turinsky, D.B. Kothe, Modeling and simulation challenges pursued by the consortium for advanced simulation of light water reactors (CASL), J. Comput. Phys. 313 (2016) 367.
- B. Kochunas, T. Downar, D. Jabaay, Validation and application of the 3D neutron transport MPACT code within CASL VERA-CS, Proc. NURETH-16 (2015). Chicago, IL, August 30-September 4.
- Y.S. Jung, C.B. Shim, C.H. Lim, H.G. Joo, Practical numerical reactor employing direct whole core neutron transport and subchannel thermal/hydraulic solvers, Ann. Nucl. Energy 62 (2013) 357-374. https://doi.org/10.1016/j.anucene.2013.06.031
- J. Lee, A. Facchini, H.G. Joo, Development of a drift-flux model based core thermal-hydraulics code for efficient high-fidelity multiphysics calculation, Nucl. Eng. Technol. 51 (2019) 1487-1503. https://doi.org/10.1016/j.net.2019.04.002
- B.O. Cho, et al., MASTER-2.0: Multi-Purpose Analyzer for Static and Transient Effects of Reactors, KAERI/TR-1211/99, Korea Atomic Energy Research Institute, 1999.
- L. Holt, et al., Investigation of feedback on neutron kinetics and thermal hydraulicsfrom detailed online fuel behavior modeling during a boron dilutiontransient in a PWR with the two-way coupled code system DYN3DTRANSURANUS, Nucl. Eng. Des. 297 (2016) 32-43. https://doi.org/10.1016/j.nucengdes.2015.11.005
- M. Garcia, et al., A Serpent2-SUBCHANFLOW-TRANSURANUS coupling for pin-bypin depletion calculations in Light Water Reactors, Ann. Nucl. Energy 139 (2020), 107213.
- J. Magedanz, al el, High-fidelity multi-physics system TORT-TD/CTF/FRAPTRAN for light water reactor analysis, Ann. Nucl. Energy 84 (2015) 234-243. https://doi.org/10.1016/j.anucene.2015.01.033
- J. Yu, et al., MCS based neutronics/thermal-hydraulics/fuel-performance coupling with CTF and FRAPCON, Comput. Phys. Commun. 238 (2019) 1-18. https://doi.org/10.1016/j.cpc.2019.01.001
- H. Yoon, et al., A multiscale and multiphysics PWR safety analysis at a subchannel scale, Nucl. Sci. Eng. 194 (2020) 633-649. https://doi.org/10.1080/00295639.2020.1727698
- H.Y. Yoon, et al., Recent improvements in the CUPID code for a multi-dimensional two-phase flow analysis of nuclear reactor components, Nucl. Eng. Technol. 46 (5) (2014) 655-666. https://doi.org/10.5516/NET.02.2014.023
- Jeong, et al., Development of a multi-dimensional thermal-hydraulic system code, MARS 1.3.1, Ann. Nucl. Energy 26 (18) (1999) 1611-1642. https://doi.org/10.1016/S0306-4549(99)00039-0
- K.J. Geelhood, et al., FRAPTRAN-2.0: AComputer code for the transient analysis of oxide fuel rods, PNNL 1 (2016), 19400. Rev.2.
- Y.J. Cho, et al., Development of a three-dimensional two-phase flow analysis code for nuclear reactor thermal hydraulics: Part II. Application and validation, Proc. PHYTRA4. Marrakech, Morocco (2018). Sepp. 17-19.
- I.K. Park, et al., An implicit code coupling of 1-D system code and 3-D in-house CFD code for multi-scaled simulations of nuclear reactor transients, Ann. Nucl. Energy 59 (2013) 80-91. https://doi.org/10.1016/j.anucene.2013.03.048
- I.K. Park, et al., Multi-scale analysis of an ATLAS-MSLB test using the coupled CUPID/MARS code, Ann. Nucl. Energy 113 (2018) 332-343. https://doi.org/10.1016/j.anucene.2017.11.036
- J.R. Lee, H.Y. Yoon, Multi-physics simulation of nuclear reactor core by coupled simulation using CUPID/MASTER, Int. J. Heat Mass Tran. 115 (2017) 1020-1032. https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.124
- H.K. Cho, Heat structure coupling of CUPID and MARS for the multi-scale simulation of the passive auxiliary feedwater system, Nucl. Eng. Des. 273 (2014) 459-468. https://doi.org/10.1016/j.nucengdes.2014.03.017
- S.W. Lee, et al., Coupled Calculation of SAPCE and FRAPTRAN, Proceedings of Korean Nuclear Society Spring Meeting, Jeju, Korea, 2018. May 17-18.
- H.C. Kim, et al., Development of fully coupled FRAPTRAN with MARS-KS code system for calculation of fuel behavior during LOCA, Proc. Topfuel (2018), 2018, A0015, Prague, Czech Republic, Sep. 30 - 04. Oct.
- D. Groeneveld, et al., AECL-UO critical heat flux lookup table, Heat Tran. Eng. 7 (1-2) (1986) 46-62, 1986. https://doi.org/10.1080/01457638608939644