DOI QR코드

DOI QR Code

Adsorption behavior of platinum-group metals and Co-existing metal ions from simulated high-level liquid waste using HONTA and Crea impregnated adsorbent

  • Naoki Osawa (Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University) ;
  • Seong-Yun Kim (Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University) ;
  • Masahiko Kubota (Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University) ;
  • Hao Wu (Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University) ;
  • Sou Watanabe (Japan Atomic Energy Agency) ;
  • Tatsuya Ito (Japan Atomic Energy Agency) ;
  • Ryuji Nagaishi (Japan Atomic Energy Agency)
  • Received : 2023.06.17
  • Accepted : 2023.09.03
  • Published : 2024.03.25

Abstract

The volume and toxicity of radioactive waste can be decreased by separating the components of high-level liquid waste according to their properties. An impregnated silica-based adsorbent was prepared in this study by combining N,N,N',N',N",N"-hexa-n-octylnitrilotriacetamide (HONTA) extractant, N',N'-di-n-hexyl-thiodiglycolamide (Crea) extractant, and macroporous silica polymer composite particles (SiO2-P). The performance of platinum-group metals adsorption and separation on prepared (HONTA + Crea)/SiO2-P adsorbent was then assessed together with that of co-existing metal ions by batch-adsorption and chromatographic separation studies. From the batch-adsorption experiment results, (HONTA + Crea)/SiO2-P adsorbent showed high adsorption performance of Pd(II) owing to an affinity between Pd(II) and Crea extractant based on the Hard and Soft Acids and Bases theory. Additionally, significant adsorption performance was observed toward Zr(IV) and Mo(VI). Compared with studies using the Crea extractant, the high adsorption performance of Zr(IV) and Mo(VI) is attributed to the HONTA extractant. As revealed from the chromatographic experiment results, most of Pd(II) was recovered from the feed solution using 0.2 M thiourea in 0.1 M HNO3. Additionally, the possibility of recovery of Zr(IV), Mo(VI), and Re(VII) was observed using the (HONTA + Crea)/SiO2-P adsorbent.

Keywords

Acknowledgement

This work was supported by JSPS KAKENHI Grant Number 22H00307.

References

  1. IAEA, Techniques for the Solidification of High-Level Wastes, IAEA Technical Reports Series, 1997, p. 176.
  2. L. Rodriguez-Penalonga, B.Y.M. Soria, A review of the nuclear fuel cycle strategies and the spent nuclear fuel management technologies, Energies 10 (2017) 1235, https://doi.org/10.3390/en10081235.
  3. C. Krause, B. Luckscheiter, Properties and behavior of the platinum group metals in the glass resulting from the vitrification of simulated nuclear fuel reprocessing waste, J. Mater. Res. 6 (1991) 2535-2546, https://doi.org/10.1557/JMR.1991.2535.
  4. Z. Kolarik, E.V. Renard, Recovery of value fission platinoids from spent nuclear fuel part I: general considerations and basic chemistry, Platin. Met. Rev. 47 (2003) 74-87. https://doi.org/10.1595/003214003X4727487
  5. K. Shimojo, Solvent extraction in analytical separation techniques, Anal. Sci. 34 (2018) 1345-1346, https://doi.org/10.2116/analsci.highlights1812.
  6. A. Zhang, Y. Wei, M. Kumagai, Y. Koma, A new partitioning process for high-level liquid waste by extraction chromatography using silica-substrate chelating agent impregnated adsorbents, J. Alloys Compd. 390 (2005) 275-281, https://doi.org/10.1016/j.jallcom.2004.08.034.
  7. R.G. Pearson, Hard and soft acids and bases, J. Am. Chem. Soc. 85 (1963) 3533-3539, https://doi.org/10.1021/ja00905a001.
  8. T. Ito, S.-Y. Kim, Y. Xu, K. Hitomi, K. Ishii, R. Nagaishi, T. Kimura, Adsorption behavior of platinum group metals in simulated high level liquid waste using macroporous (MOTDGA-TOA)/SiO2-P silica-based absorbent, Separ. Sci. Technol. 48 (2013) 2616-2625, https://doi.org/10.1080/01496395.2013.807290.
  9. N. Osawa, M. Kubota, H. Wu, S.-Y. Kim, Development of N,N,N',N'-tetra-2-ethylhexyl-thiodiglycolamide silica-based adsorbent to separate useful metals from simulated high-level liquid waste, J. Chromatogr. A 1678 (2022), 463353, https://doi.org/10.1016/j.chroma.2022.463353.
  10. Y. Xu, S.-Y. Kim, T. Ito, T. Tada, K. Hitomi, K. Ishii, Adsorption properties and behavior of the platinum group metals onto a silica-based (Crea + TOA)/SiO2-P adsorbent from simulated high level liquid waste of PUREX reprocessing, J. Radioanal. Nucl. Chem. 297 (2013) 41-48, https://doi.org/10.1007/s10967-012-2314-9.
  11. T. Ito, S.-Y. Kim, N. Nagano, K. Hitomi, Effect of γ-ray irradiation on thiodiglycolamide-type extractant-impregnated adsorbents for separation of platinum group metals from high-level liquid waste, Energy Proc. 131 (2017) 195-202, https://doi.org/10.1016/j.egypro.2017.09.427.
  12. H. Wu, S.-Y. Kim, M. Miwa, S. Matsuyama, Synergistic adsorption behavior of a silica-based adsorbent toward palladium, molybdenum, and zirconium from simulated high-level liquid waste, J. Hazard Mater. 411 (2021), 125136, https://doi.org/10.1016/j.jhazmat.2021.125136.
  13. Y. Sasaki, Y. Tsubata, Y. Kitatsuji, Y. Morita, Novel soft-hard donor ligand, NTAamide, for mutual separation of trivalent actinoids and lanthanoids, Chem. Lett. 42 (2013) 91-92, https://doi.org/10.1246/cl.2013.91.
  14. Y. Ban, H. Suzuki, S. Hotoku, N. Tsutsui, Y. Tsubata, T. Matsumura, Minor actinides separation by N,N,N',N',N",N"-hexaoctyl nitrilotriacetamide (HONTA) using mixer-settler extractors in a hot cell, Solvent Extr. Ion Exch. 37 (2019) 489-499, https://doi.org/10.1080/07366299.2019.1693486.
  15. T. Akuzawa, S.-Y. Kim, M. Kubota, H. Wu, S. Watanabe, Y. Sano, M. Takeuchi, T. Arai, Design of MA(III)/Ln(III) separation process of extraction chromatography technology, J. Radioanal. Nucl. Chem. 331 (2022) 5851-5858, https://doi.org/10.1007/s10967-022-08658-7.
  16. N. Osawa, M. Kubota, H. Wu, S.-Y. Kim, Adsorption and separation behavior of Pd (II) from simulated high-level liquid waste using N,N,N',N'-tetra-2-ethylhexyl-thiodiglycolamide silica-based adsorbent, Separ. Sci. Technol. 57 (2022) 48-59, https://doi.org/10.1080/01496395.2021.1883653.
  17. S. Xu, S. Ning, Y. Wang, X. Wang, H. Dong, L. Chen, X. Yin, T. Fujita, Y. Wei, Precise separation and efficient enrichment of palladium from wastewater by amino-functionalized silica adsorbent, J. Clean. Prod. 396 (2023), 136479, https://doi.org/10.1016/j.jclepro.2023.136479.
  18. S. Ning, S. Zhang, W. Zhang, J. Zhou, S. Wang, X. Wang, Y. Wei, Separation and recovery of Rh, Ru and Pd from nitrate solution with a silica-based IsoBu-BTP/SiO2-P adsorbent, Hydrometallurgy 191 (2020), 105207, https://doi.org/10.1016/j.hydromet.2019.105207.
  19. S.-C. Zhang, S.-Y. Ning, J. Zhou, S.-Y. Wang, W. Zhang, X.-P. Wang, Y.-Z. Wei, New insight into the adsorption of ruthenium, rhodium, and palladium from nitric acid solution by a silica-polymer adsorbent, Nucl. Sci. Tech. 31 (2020) 34, https://doi.org/10.1007/s41365-020-0744-6.
  20. Y. Xu, S.-Y. Kim, T. Ito, H. Tokuda, K. Hitomi, K. Ishii, Adsorption behavior of platinum group metals onto a silica-based (Crea + Dodec)/SiO2-P extraction resin from simulated high level liquid waste, Separ. Sci. Technol. 50 (2015) 260-266, https://doi.org/10.1080/01496395.2014.956222.
  21. M. Naushad, Z.A. Alothman, Md R. Awual, M.M. Alam, G.E. Eldesoky, Adsorption kinetics, isotherms, and thermodynamic studies for the adsorption of Pb2+ and Hg2+ metal ions from aqueous medium using Ti(IV) iodovanadate cation exchanger, Ionics 21 (2015) 2237-2245, https://doi.org/10.1007/s11581-015-1401-7.
  22. E.C. Lima, A. Hosseini-Bandegharaei, J. Carlos Moreno-Pirajan, I. Anastopoulos, A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van't Hoof equation for calculation of thermodynamic parameters of adsorption, J. Mol. Liq. 273 (2019) 425-434, https://doi.org/10.1016/j.molliq.2018.10.048.
  23. T.S. Khayyun, A.H. Mseer, Comparison of the experimental results with the Langmuir and Freundlich models for copper removal on limestone adsorbent, Appl. Water Sci. 9 (2019) 170, https://doi.org/10.1007/s13201-019-1061-2.
  24. M.C. Ncibi, Applicability of some statistical tools to predict optimum adsorption isotherm after linear and non-linear regression analysis, J. Hazard Mater. 153 (2008) 207-212, https://doi.org/10.1016/j.jhazmat.2007.08.038.
  25. JAEA, Handbook on Process and Chemistry of Nuclear Fuel Reprocessing, third ed., 2015, https://doi.org/10.11484/jaea-review-2015-002. JAEA-Review 2015-002.
  26. S.-Y. Kim, Y. Xu, T. Ito, Y. Wu, T. Tada, K. Hitomi, E. Kuraoka, K. Ishii, A novel partitioning process for treatment of high level liquid waste using macroporous silica-based adsorbents, J. Radioanal. Nucl. Chem. 295 (2013) 1043-1050, https://doi.org/10.1007/s10967-012-1878-8.
  27. R. Ruhela, J.N. Sharma, B.S. Tomar, K.K. Singh, M. Kumar, P.N. Bajaj, R.C. Hubli, A.K. Suri, Studies on hydrolytic and radiolytic stability of N,N,N',N'-tetra-(2-ethylhexyl) thiodiglycolamide T(2EH)TDGA, Radiochim. Acta 100 (2012) 37-44, https://doi.org/10.1524/ract.2011.1892.