과제정보
This research was funded by the Natural Science Foundation of Inner Mongolia Autonomous Region, China grant number 2022MS06008.
참고문헌
- Qin, J., Du, J., Li, J.: Adaptive finite-time trajectory tracking event-triggered control scheme for underactuated surface vessels subject to input saturation. IEEE Trans. Intell. Transp. Syst. 24(8), 8809-8819 (2023) https://doi.org/10.1109/TITS.2023.3256094
- Bai, H., Yu, B., Gu, W.: Research on position sensorless control of rdt motor based on improved SMO with continuous hyperbolic tangent function and improved feedforward PLL. J. Mar. Sci. Eng. 11(3), 642 (2023)
- Marom, R., Amalraj, S.F., Leifer, N., et al.: A review of advanced and practical lithium battery materials. J. Mater. Chem. 21(27), 9938-9954 (2011) https://doi.org/10.1039/c0jm04225k
- Hossain Lipu, M.S., Hannan, M.A., Hussain, A., Ayob, A., Saad, M.H.M., Karim, T.F., How, D.N.T.: Data-driven state of charge estimation of lithium-ion batteries: algorithms, implementation factors, limitations and future trends. J. Clean. Prod. 277, 124110 (2020)
- Li, Y., Guo, H., Qi, F., Li, M.: Comparative study of the influence of open circuit voltage tests on state of charge online estimation for lithium-ion batteries. IEEE Access 8(01), 17535-17547 (2020) https://doi.org/10.1109/ACCESS.2020.2967563
- Sun, X., Cao, Y., Zheng, L., et al.: A comparative investigation on peak current solution methods for lithium-ion battery peak power capability prediction. IEEE Trans. Energy Convers. 38(3), 1961-1700 (2023)
- Sun, X., Xu, N., Chen, Q., et al.: State of power capability prediction of lithium-ion battery from the perspective of electrochemical mechanisms considering temperature effect. IEEE Trans. Transport. Electrif. 9(2), 2453-2463 (2022)
- Lashway, C.R., Mohammed, O.A.: Adaptive battery management and parameter estimation through physics-based modeling and experimental verification. IEEE Trans. Transport. Electrif. 2(4), 454-464 (2016) https://doi.org/10.1109/TTE.2016.2558843
- Guo, B., Zhang, P., Wang, W., Wang, F.: SOC estimation study of iron phosphate lithium batteries based on OCV-SOC curve clusters. Power Technol. 43(7), 1125-1128+1139 (2019)
- Zhang, Z., Guo, T., Gao, M., He, Z., Dong, Z.: A review of the research on methods for estimating the state of charge of lithium-ion batteries for electric vehicles. J. Electron. Inform. 43(07), 1803-1815 (2021)
- Shrivastava, P., Soon, T.K., Idris, M.Y.I.B., Mekhilef, S.: Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries. Renew. Sustain. Energy Rev. 113, 109233 (2019)
- Hidalgo-Reyes, J.I., Gomez-Aguilar, J.F., Alvarado-Martinez, V.M., Lopez-Lopez, M.G., Escobar-Jimenez, R.F.: Battery state-of-charge estimation using fractional extended Kalman filter with Mittag-Leffler memory. Alex. Eng. J. 59(4), 1919-1929 (2020) https://doi.org/10.1016/j.aej.2019.12.006
- Chemali, E., Kollmeyer, P.J., Preindl, M., Ahmed, R., Emadi, A.: Long short-term memory networks for accurate state-of-charge estimation of li-ion batteries. IEEE Trans. Ind. Electron. 65(8), 6730-6739 (2018) https://doi.org/10.1109/TIE.2017.2787586
- Li, S., Ju, C., Li, J., Fang, R., et al.: State-of-Charge estimation of lithium-ion batteries in the battery degradation process based on recurrent neural network. Energies 14(2), 306 (2021)
- Yang, B., Wang, Y., Zhan, Y.: Lithium battery state-of-charge estimation based on a bayesian optimization bidirectional long short-term memory neural network. Energies 15(13), 4670 (2022)
- Zhang, Z., Dong, Z., Lin, H., He, Z., Wang, M., He, Y., Gao, X., Gao, M.: An improved bidirectional gated recurrent unit method for accurate state-of-charge estimation. IEEE Access 9, 11252-11263 (2021) https://doi.org/10.1109/ACCESS.2021.3049944
- Bhattacharjee, A., Verma, A., Mishra, S., Saha, T.K.: Estimating state of charge for xEV batteries using 1D convolutional neural networks and transfer learning. IEEE Trans. Veh. Technol. 70(4), 3123-3135 (2021) https://doi.org/10.1109/TVT.2021.3064287
- Liu, Y., Li, J., Zhang, G., Hua, B., Xiong, N.: State of charge estimation of lithium-ion batteries based on temporal convolutional network and transfer learning. IEEE Access 9, 34177-34187 (2021) https://doi.org/10.1109/ACCESS.2021.3057371
- Hannan, M.A., How, D.N.T., Lipu, M.S.H., Mansor, M., Ker, P.J., Dong, Z.Y., Sahari, K.S.M., Tiong, S.K., Muttaqi, K.M., Mahlia, T.M.I., Blaabjerg, F.: Deep learning approach towards accurate state of charge estimation for lithium-ion batteries using self-supervised transformer model. Sci. Rep. 11(1), 19541 (2021)
- Li, Y., Li, K., Liu, X., Wang, Y., Zhang, L.: Lithium-ion battery capacity estimation a pruned convolutional neural network approach assisted with transfer learning. Appl. Energy 285, 116410 (2021)
- Shen, S., Sadoughi, M., Li, M., Wang, Z.C.: Deep convolutional neural networks with ensemble learning and transfer learning for capacity estimation of lithium-ion batteries. Appl. Energy 260, 114296 (2020)
- Wang, Y.X., Chen, Z., Zhang, W.: Lithium-ion battery state-of-charge estimation for small target sample sets using the improved GRU-based transfer learning. Energy 244, 123178 (2022)
- Pan, S.J., Tsang, I.W., Kwok, J.T., Yang, Q.: Domain adaptation via transfer component analysis. IEEE Trans. Neural Netw. 22(2), 199-210 (2011) https://doi.org/10.1109/TNN.2010.2091281
- Fernando, B., Habrard, A., Sebban, M, et al.: Unsupervised visual domain adaptation using subspace alignment. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2960-2967 (2013)
- Li, W., Duan, L., Xu, D., Tsang, I.W.: Learning with augmented features for supervised and semi-supervised heterogeneous domain adaptation. IEEE Trans. Pattern Anal. Mach. Intell. 36(6), 1134-1148 (2014) https://doi.org/10.1109/TPAMI.2013.167
- Tzeng, E., Hofman, J., Saenko, K., et al.: Adversarial discriminative domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7167-7176 (2017)
- Han, T., Wang, Z., Meng, H.: End-to-end capacity estimation of Lithium-ion batteries with an enhanced long short-term memory network considering domain adaptation. J. Power. Sources 520, 230823 (2022)
- Oyewole, I., Chehade, A., Kim, Y.: A controllable deep transfer learning network with multiple domain adaptation for battery state-of-charge estimation. Appl. Energy 312, 118726 (2022)
- Fu, S., Zhang, Y., Lin, L., et al.: Deep residual LSTM with domain-invariance for remaining useful life prediction across domains. Reliab. Eng. Syst. Saf. 216, 108012 (2021)
- Ganin, Y., Ustinova, E., Ajakan, H., et al.: Domain-adversarial training of neural Networks. J. Mach. Learn. Res. 17(1), 2096-2030 (2016)
- Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. International conference on machine learning. In: PMLR, pp. 1180-1189 (2015)
- Kollmeyer, P.: Panasonic 18650PF Li-ion battery data. Mendeley Data V1. (2018). https://doi.org/10.17632/wykht8y7tg.1
- Phillip, K., Mina, N., Michael, S.: LG 18650HG2 Li-ion battery data. Mendeley Data V2, (2020), https://doi.org/10.17632/b5mj79w5w9.2.