DOI QR코드

DOI QR Code

Hardware implementation of reliable designs for full SiC inverter-fed motor drive systems

  • Yun‑Jae Bae (Department of Electrical and Computer Engineering, Ajou University) ;
  • Hye‑Won Choi (Department of Electrical and Computer Engineering, Ajou University) ;
  • Yong‑Jin Kang (Application Platform Chapter, LS ELECTRIC) ;
  • Cheol‑Hyun Park (Application Platform Chapter, LS ELECTRIC) ;
  • Kyo‑Beum Lee (Department of Electrical and Computer Engineering, Ajou University)
  • 투고 : 2023.12.21
  • 심사 : 2024.02.28
  • 발행 : 2024.05.20

초록

This paper presents a hardware implementation for the reliable design of a full silicon carbide (SiC) inverter-fed motor drive system. SiC MOSFETs have been widely used in various applications due to their low switching losses, high voltage capabilities, and high-temperature operation capability. However, SiC MOSFETs are vulnerable to the overvoltage and overcurrent caused by the high switching frequencies and faults of parasitic inductance. The high speed of switching transitions causes high dv/dt, which leads to insulation failures of motor windings. In addition, the high di/dt, according to the parasitic inductance, can destroy the switching devices under short-circuit faults. A gate driver with desaturation protection is required to prevent short-circuit faults, and a passive filter should be installed to reduce the dv/dt to within prescribed values. This paper presents an optimized design process for a full SiC inverter-fed motor drive system with improved reliability. The effectiveness and validity of the process are verified through experimental results under various conditions.

키워드

참고문헌

  1. Lelis, A.J., Green, R., Habersat, D.B., El, M.: Basic mechanisms of threshold-voltage instability and implications for reliability testing of SiC MOSFETs. IEEE Trans. Electron Devices 62(2), 316-323 (2015)  https://doi.org/10.1109/TED.2014.2356172
  2. Zhang, H., Tolbert, L.M.: Efficiency impact of silicon carbide power electronics for modern wind turbine full scale frequency converter. IEEE Trans. Ind. Electron. 58(1), 21-28 (2011)  https://doi.org/10.1109/TIE.2010.2048292
  3. Chang, Y., Iannuzzo, F., Bahman, A.S., He, X., Blaabjerg, F.: Compact sandwiched press-pack SiC power module with low stray inductance and balanced thermal stress. IEEE Trans. Power Electron. 35(3), 2237-2241 (2020)  https://doi.org/10.1109/TPEL.2019.2934709
  4. Ma, X., Wang, J., Ding, L.: Systematic study on temperature and time-varying characteristics of SiC MOSFET static parameters at 200 ℃. J. Power Electron. 24(2), 269-280 (2024)  https://doi.org/10.1007/s43236-023-00711-2
  5. Swamy, M.M., Kang, J.-K., Shirabe, K.: Power loss, system efficiency, and leakage current comparison between Si IGBT VFD and SiC FET VFD with various filtering options. IEEE Trans. Ind. Appl. 51(5), 3858-3866 (2015)  https://doi.org/10.1109/TIA.2015.2420616
  6. A. Kanale, B. J. Baliga: A new user-configurable method to improve short-circuit ruggedness of 1.2-kV SiC power MOSFETs. IEEE Trans. Power Electron. 36(2) 2059-2067 (2021)  https://doi.org/10.1109/TPEL.2020.3010154
  7. Peftitsis, D., Rabkowski, J.: Gate and base drivers for silicon carbide power transistors: an overview. IEEE Trans. Power Electron. 31(10), 7194-7213 (2016) 
  8. T. Liu, R. Ning, T. T. Y. Wong, Z. J. Shen: Modeling and analysis of SiC MOSFET switching oscillations. IEEE J. Emerg. Sel. Topics Power Electron. 4(3), 747-756 (2016) 
  9. Xue, J., Xin, Z., Wang, H., Loh, P.C., Blaabjerg, F.: An improved di/dt RCD detection for short-circuit protection of SiC MOSFET. IEEE Trans. Power Electron. 36(1), 12-17 (2021)  https://doi.org/10.1109/TPEL.2020.3000246
  10. Kim, J., Yoon, D., Choi, D., Lee, J., Cho, Y.: 25 kW 1200 V unidirectional DC solid-state circuit breaker design with SiC MOSFET desaturation detection. J. Power Electron. 23(7), 1150-1159 (2023)  https://doi.org/10.1007/s43236-023-00644-w
  11. Camacho, A.P., Sala, V., Ghorbani, H., Martinez, J.L.R.: A novel active gate driver for improving SiC MOSFET switching trajectory. IEEE Trans. Ind. Electron. 64(11), 9032-9042 (2017)  https://doi.org/10.1109/TIE.2017.2719603
  12. Anurag, A., Acharya, S., Prabowo, Y., Gohil, G., Bhattacharya, S.: Design considerations and development of an innovative gate driver for medium-voltage power devices with high dv/dt. IEEE Trans. Power Electron. 34(6), 5256-5267 (2019)  https://doi.org/10.1109/TPEL.2018.2870084
  13. Jeong, J., Kwak, S.: Investigation of loss characteristics in sic-mosfet based three-phase converters subject to power cycling and short circuit aging. J. Electr. Eng. Technol. 18(7), 3049-3059 (2023)  https://doi.org/10.1007/s42835-023-01537-5
  14. Kim, H., Anurag, A., Acharya, S., Bhattacharya, S.: Analytical study of SiC MOSFET based inverter output dv/dt mitigation and loss comparison with a passive dv/dt filter for high-frequency motor drive applications. IEEE Access. 9, 15228-15238 (2021)  https://doi.org/10.1109/ACCESS.2021.3053198
  15. Xue, C., Zhou, D., Li, Y.: Finite-control-set model predictive control for three-level NPC inverter-fed PMSM drives with LC filter. IEEE Trans. Ind. Electron. 68(12), 11980-11991 (2021)  https://doi.org/10.1109/TIE.2020.3042156
  16. Mishra, P., Maheshwari, R.: Design, analysis, and impacts of sinusoidal LC filter on pulsewidth modulated inverter fed-induction motor drive. IEEE Trans. Ind. Electron. 67(4), 2678-2688 (2020)  https://doi.org/10.1109/TIE.2019.2913824
  17. Chu, E., Wang, Z., Kang, Y.: Analysis and implementation of passive soft switching snubber for PWM inverters. J. Power Electron. 23(1), 48-57 (2023)  https://doi.org/10.1007/s43236-022-00520-z
  18. Velandar, E., Bohlin, G., Sandberg, A., Wiik, T., Botling, R., Linadhl, M., Zanuto, G., Nee, H.-P.: An ultralow loss inductorless dv/dt filter concept for medium-power voltage source motor drive converters with SiC devices. IEEE Trans. Power Electron. 33(7), 6072-6081 (2018)  https://doi.org/10.1109/TPEL.2017.2739839
  19. Baek, S., Cho, Y., Cho, B.-G., Hong, C.: Performance comparison between two-level and three-level SiC-based VFD applications with output filters. IEEE Trans. Ind. Appl. 55(5), 4770-4779 (2019)  https://doi.org/10.1109/TIA.2019.2920360
  20. Choi, E., Kim, S., Kang, F., Park, S.: Cooperative control of two single-phase full-bridge structures composed of master and damping inverter for output voltage stabilization. J. Electr. Eng. Technol. 18(4), 3033-3047 (2023) https://doi.org/10.1007/s42835-023-01478-z