DOI QR코드

DOI QR Code

A modular multilevel converter with active power filter (APF-MMC) under low-frequency operation

  • Guanlong Jia (State Key Lab of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology) ;
  • Mingshuo Li (State Key Lab of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology) ;
  • Lin Chen (State Key Lab of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology) ;
  • Binhao Shi (State Key Lab of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology) ;
  • Feng Niu (State Key Lab of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology) ;
  • Yu Tang (State Key Lab of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology)
  • Received : 2023.09.27
  • Accepted : 2023.12.22
  • Published : 2024.05.20

Abstract

In the realm of medium/high voltage applications, the modular multilevel converter with an active power filter (APF-MMC) emerges as a technology that eliminated the inherent voltage fluctuations of larger sub-module (SM) capacitors. However, the introduced APF circuit in each phase can only deal with power in even frequencies, and the APF-MMC cannot be directly applied in the field of motor drives with low-frequency operation. In this paper, based on the APF-MMC topology, by adding two high-frequency variables as control degrees of freedom, the base frequency power is transferred to high-frequency power, which can considerably minimize the capacitor voltage ripple in the low-frequency region of the topology. In addition, the influence of the injected high-frequency variables on the output characteristics of the topology is eliminated by controlling the APF circuit as hardware degree of freedom. Its equivalent circuit and operating principle are introduced in detail. Concurrently, a control method is proposed for the APF circuit, ensuring seamless operation of the converter. Finally, through a combination of simulation and experimental results, it is demonstrated that the APF-MMC topology surpasses the conventional MMC in its efficacy under low-frequency operation.

Keywords

Acknowledgement

This work is sponsored by National Natural Science Foundation of China Grant (52307199) and Natural Science Foundation of Hebei Province of China under Grant (E2022202065).

References

  1. Zhou, L., Chen, C., Xiong, J., Zhang, K.: A robust capacitor voltage balancing method for CPS-PWM-based modular multilevel converters accommodating wide power range. IEEE Trans. Power Electron. 37(12), 14306-14316 (2022)
  2. Tang, S., Chen, M., Jia, G., Zhang, C.: Topology of current-limiting and energy-transferring DC circuit breaker for DC distribution networks. CSEE J. Power Energy Syst. 6(2), 298-306 (2020)
  3. Poblete, P., Pizarro, G., Droguett, G., Nunez, F., Judge, D., et al.: Distributed neural network observer for submodule capacitor voltage estimation in modular multilevel converters. IEEE Trans. Power Electron. 37(9), 10306-10318 (2022) https://doi.org/10.1109/TPEL.2022.3163395
  4. Li, B., Zhang, Y., Wang, G., Sun, W., Xu, D., et al.: A modified modular multilevel converter with reduced capacitor voltage fluctuation. IEEE Trans. Ind. Electron. 62(10), 6108-6119 (2015) https://doi.org/10.1109/TIE.2015.2423665
  5. Jia, G., Chen, M., Tang, S., Zhang, C., Zhu, G.: Active power decoupling for a modified modular multilevel converter to decrease submodule capacitor voltage ripples and power losses. IEEE Trans. Power Electron. 36(3), 2835-2851 (2021) https://doi.org/10.1109/TPEL.2020.3016493
  6. Kong, Z., Huang, X., Wang, Z., Xiong, J., Zhang, K.: Active power decoupling for submodules of a modular multilevel converter. IEEE Trans. Power Electron. 33(1), 125-136 (2018) https://doi.org/10.1109/TPEL.2017.2661539
  7. Ilves, K., Norrga, S., Harnefors, L., Nee, H.-P.: On energy storage requirements in modular multilevel converters. IEEE Trans. Power Electron. 29(1), 77-88 (2014) https://doi.org/10.1109/TPEL.2013.2254129
  8. Lesnicar, A., Marquardt, R.: An innovative modular multilevel converter topology suitable for a wide power range. In: Proceedings of IEEE Power Tech Conference, June 23-26, 2003, vol. 3, Bologna, Italy, p. 6 (2003)
  9. Picas, R., Pou, J., Ceballos, S., Agelidis, V.G., Saeedifard, M.: Minimization of the capacitor voltage fluctuations of a modular multilevel converter by circulating current control. In: Proceedings of IEEE IECON, Montreal, QC, Canada, October 25-28, 2012, pp. 4985-4991 (2012)
  10. Pou, J., Ceballos, S., Konstantinou, G., Agelidis, V.G., Picas, R., et al.: Circulating current injection methods based on instantaneous information for the modular multilevel converter. IEEE Trans. Ind. Electron. 62(2), 777-788 (2015) https://doi.org/10.1109/TIE.2014.2336608
  11. Engel, S.P., De Doncker, R.W.: Control of the modular multilevel converter for minimized cell capacitance. In: Proceedings of EPE, Birmingham, U.K., 30 August-1 September 2011, pp. 1-10
  12. Picas, R., Pou, J., Ceballos, S., Zaragoza, J., Konstantinou, G., et al.: Optimal injection of harmonics in circulating currents of modular multilevel converters for capacitor voltage ripple minimization. In: Proceedings of IEEE ECCE Asia, 2013, pp. 318-324
  13. Li, B., Zhou, S., Xu, D., Yang, R., Cecati, C.: An improved circulating current injection method for modular multilevel converters in variable-speed drives. IEEE Trans. Ind. Electron. 63(11), 1 (2016)
  14. Korn, A.J., Winkelnkemper, M., Steimer, P.: Low output frequency operation of the modular multilevel converter. In: Proceedings of IEEE ECCE, 2010, pp. 3993-3997 (2010)
  15. Hagiwara, M., Hasegawa, I., Akagi, H.: Start-up and low-speed operation of an electric motor driven by a modular multilevel cascade inverter. IEEE Trans. Ind. Appl. 49(4), 1556-1565 (2013) https://doi.org/10.1109/TIA.2013.2256331
  16. Jung, J., Lee, H., Sul, S.-K.: Control strategy for improved dynamic performance of variable-speed drives with modular multilevel converter. IEEE J. Emerg. Sel. Top. Power Electron. 3(2), 371-380 (2015) https://doi.org/10.1109/JESTPE.2014.2323955
  17. Debnath, S., Qin, J., Saeedifard, M.: Control and stability analysis of modular multilevel converter under low-frequency operation. IEEE Trans. Ind. Electron. 62(9), 5329-5339 (2015) https://doi.org/10.1109/TIE.2015.2414908
  18. Li, A., Lin, L., Xu, C., Yang, S.: Coordinated optimization of capacitor voltage ripple and current stress minimization for modular multilevel converter. In: 2018 IEEE International Power Electronics and Application Conference and Exposition, Shenzhen, 2018, pp. 1-6 (2018)
  19. Huang, M., Zou, J., Ma, X., Li, Y., Han, M.: Modified modular multilevel converter to reduce submodule capacitor voltage ripples without common-mode voltage injected. IEEE Trans. Ind. Electron. 66(3), 2236-2246 (2019) https://doi.org/10.1109/TIE.2018.2840484
  20. Chen, R., Liu, Y., Peng, F.Z.: DC capacitor-less inverter for single phase power conversion with minimum voltage and current stress. IEEE Trans. Power Electron. 30(10), 5499-5507 (2015) https://doi.org/10.1109/TPEL.2014.2375271
  21. Liang, S., Lu, X., Chen, R., Liu, Y., Zhang, S., et al.: A solid state variable capacitor with minimum DC capacitance. In: 2014 IEEE Applied Power Electronics Conference and Exposition-APEC 2014, Fort Worth, TX, 2014, pp. 3496-3501 (2014)
  22. Tsuno, K., Shimizu, T., Wada, K., Ishii, K.: Optimization of the DC ripple energy compensating circuit on a single-phase voltage source PWM rectifier. In: 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551), Aachen, Germany, 2004, pp. 316-321 (2004)
  23. Mazumder, S.K., Burra, R.K., Acharya, K.: A ripple-mitigating and energy-efficient fuel cell power-conditioning system. IEEE Trans. Power Electron. 22(4), 1437-1452 (2007) https://doi.org/10.1109/TPEL.2007.900598
  24. Cao, X., Zhong, Q., Ming, W.: Ripple eliminator to smooth DC-Bus voltage and reduce the total capacitance required. IEEE Trans. Power Electron. 62(4), 2224-2235 (2015)
  25. Harb, S., Mirjafari, M., Balog, R.S.: Ripple-port module-integrated inverter for grid-connected PV applications. IEEE Trans. Ind. Appl. 49(6), 2692-2698 (2013) https://doi.org/10.1109/TIA.2013.2263783
  26. Jia, G., Chen, M., Tang, S., Zhang, C., Zhao, B.: A modular multilevel converter with active power filter for submodule capacitor voltage ripples and power losses reduction. IEEE Trans. Power Electron. 35(11), 11401-11417 (2020) https://doi.org/10.1109/TPEL.2020.2982440
  27. Sun, Y., Liu, Y., Su, M., Xiong, W., Yang, J.: Review of active power decoupling topologies in single-phase systems. IEEE Trans. Power Electron. 31(7), 4778-4794 (2016)
  28. Zhou, Y., Jiang, D., Guo, J., Hu, P., Liang, Y.: Analysis and control of modular multilevel converters under unbalanced conditions. IEEE Trans. Power Deliv. 28(4), 1986-1995 (2013) https://doi.org/10.1109/TPWRD.2013.2268981
  29. Song, S., Liu, J., Ouyang, S., Chen, X.: An improved high-frequency common-mode voltage injection method in modular multilevel converter in motor drive application. In: 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, 2018, pp. 2496-2500 (2018)
  30. Ming, H., Jianlong, Z., Xikui, M., Yang, L., Mingyue, H.: Modifed modular multilevel converter to reduce sub-module capacitor voltage ripples without common-mode voltage injected. IEEE Trans. Ind. Electron. 66(3), 2236-2246 (2019) https://doi.org/10.1109/TIE.2018.2840484
  31. Wang, K., Li, Y., Zheng, Z., Xu, L.: Voltage balancing and fiuctuation suppression method of floating capacitors in a new modular multilevel converter. IEEE Trans. Ind. Electron. 60(5), 1943-1954 (2013) https://doi.org/10.1109/TIE.2012.2201433
  32. Wang, R., Wang, F., Boroyevich, D., Burgos, R., Lai, R., et al.: A high power density single-phase PWM rectifier with active ripple energy storage. IEEE Trans. Power Electron. 26(5), 1430-1443 (2011) https://doi.org/10.1109/TPEL.2010.2090670