DOI QR코드

DOI QR Code

A review of chloride induced stress corrosion cracking characterization in austenitic stainless steels using acoustic emission technique

  • Suresh Nuthalapati (Department of Mechanical Engineering, Universiti Teknologi PETRONAS) ;
  • K.E. Kee (Department of Mechanical Engineering, Universiti Teknologi PETRONAS) ;
  • Srinivasa Rao Pedapati (Department of Mechanical Engineering, The University of Texas Permian Basin) ;
  • Khairulazhar Jumbri (Department of Fundamental and Applied Science, Universiti Teknologi PETRONAS)
  • Received : 2023.02.08
  • Accepted : 2023.11.02
  • Published : 2024.02.25

Abstract

Austenitic stainless steels (ASS) are extensively employed in various sectors such as nuclear, power, petrochemical, oil and gas because of their excellent structural strength and resistance to corrosion. SS304 and SS316 are the predominant choices for piping, pressure vessels, heat exchangers, nuclear reactor core components and support structures, but they are susceptible to stress corrosion cracking (SCC) in chloride-rich environments. Over the course of several decades, extensive research efforts have been directed towards evaluating SCC using diverse methodologies and models, albeit some uncertainties persist regarding the precise progression of cracks. This review paper focuses on the application of Acoustic Emission Technique (AET) for assessing SCC damage mechanism by monitoring the dynamic acoustic emissions or inelastic stress waves generated during the initiation and propagation of cracks. AET serves as a valuable non-destructive technique (NDT) for in-service evaluation of the structural integrity within operational conditions and early detection of critical flaws. By leveraging the time domain and time-frequency domain techniques, various Acoustic Emission (AE) parameters can be characterized and correlated with the multi-stage crack damage phenomena. Further theories of the SCC mechanisms are elucidated, with a focus on both the dissolution-based and cleavage-based damage models. Through the comprehensive insights provided here, this review stands to contribute to an enhanced understanding of SCC damage in stainless steels and the potential AET application in nuclear industry.

Keywords

Acknowledgement

The authors would like to thank the Ministry of Higher Education (MOHE), Malaysia, for providing financial assistance under Fundamental Research Grant Scheme (FRGS/1/2/2020/TK0/UTP/03/2), and Universiti Teknologi PETRONAS, Malaysia, for provided financial assistance under YUTP-FRG 015LC0-493.

References

  1. J. Deng, et al., Steam oxidation of Cr-coated zirconium alloy claddings at 1200 ℃: kinetics transition and failure mechanism of Cr coatings, J. Nucl. Mater. 586 (June) (Dec. 2023), 154684. 
  2. S.J. Zinkle, J.T. Busby, Structural materials for fission & fusion energy, Mater. Today 12 (11) (Nov. 2009) 12-19. 
  3. K. Kurosaki, S. Yamanaka, Neutron reflector materials (Be, hydrides), Comprehensive Nuclear Materials 7 (January 2019) (2020) 382-399. Elsevier. 
  4. T.S. Byun, et al., Mechanical behavior of additively manufactured and wrought 316L stainless steels before and after neutron irradiation, J. Nucl. Mater. 548 (May 2021), 152849. 
  5. S. Prakash, Development of advanced alloys with improved resistance to corrosion and stress corrosion cracking (SCC) in power plants, in: Structural Alloys for Power Plants, Elsevier, 2014, pp. 294-318. 
  6. P. Parikin, et al., Effect of arc plasma sintering on the structural and microstructural properties of Fe-Cr-Ni austenitic stainless steels, Makara J. Technol. 25 (2) (Sep. 2021) 71. 
  7. M.L. Martin, et al., Enumeration of the hydrogen-enhanced localized plasticity mechanism for hydrogen embrittlement in structural materials, Acta Mater. 165 (2019) 734-750. 
  8. T. Michler, Austenitic stainless steels, in: Reference Module in Materials Science and Materials Engineering, Elsevier, 2016, pp. 1-6. June 2015. 
  9. D. Xu, X. Wan, J. Yu, Effect of cold deformation on microstructures and mechanical properties of austenitic stainless steel, Metals 8 (7) (2018) 1-14, https://doi.org/10.3390/met8070522. 
  10. K. Wu, W.S. Jung, J.W. Byeon, In-situ monitoring of pitting corrosion on vertically positioned 304 stainless steel by analyzing acoustic-emission energy parameter, Corrosion Sci. 105 (2016) 8-16. 
  11. H. Shaikh, et al., Evaluation of stress corrosion cracking phenomenon in an AISI type 316LN stainless steel using acoustic emission technique, Corrosion Sci. 49 (2) (2007) 740-765. 
  12. S.M. Elsariti, Haftirman, Behaviour of stress corrosion cracking of austenitic stainless steels in sodium chloride solutions, Procedia Eng. 53 (2013) 650-654. 
  13. G.S. Was, S. Ukai, Austenitic stainless steels, in: Structural Alloys for Nuclear Energy Applications, Elsevier Inc., 2019, pp. 293-347. 
  14. J.E. Truman, The influence of chloride content, pH and temperature of the test solution on the occurrence of stress corrosion cracking with austenitic stainless steel, Corros. Sci. Pergamon Press. Print. Gt. Britain 17 (August 1976) (1977) 737-746. 
  15. S.H. Khodamorad, N. Alinezhad, D. Haghshenas Fatmehsari, K. Ghahtan, Stress corrosion cracking in Type.316 plates of a heat exchanger, Case Stud. Eng. Fail. Anal. 5 (6) (2016) 59-66. 
  16. A. Yonezu, H. Cho, M. Takemoto, Detection of stress corrosion cracking of type 304 stainless steel using acoustic emission and corrosion potential fluctuation, Adv. Mater. Res. 13 (14) (Feb. 2006) 243-250. 
  17. W. Zhang, L. Dunbar, D. Tice, Monitoring of stress corrosion cracking of sensitised 304H stainless steel in nuclear applications by electrochemical methods and acoustic emission, energy Mater 3 (2) (2008) 59-71. 
  18. H. Heidary, A. Refahi Oskouei, M. Ahmadi, Mechanism detection of stress corrosion cracking by acoustic emission and effect of manufacturing process on AE signals, Proc. - Eur. Conf. Noise Control (June) (2008) 2109-2114. 
  19. R. Kilian, A. Roth, Corrosion behaviour of reactor coolant system materials in nuclear power plants, Mater. Corros. 53 (10) (2002) 727-739. 
  20. M.A. Rodriguez, Corrosion control of nuclear steam generators under normal operation and plant-outage conditions: a review, Corrosion Rev. 38 (3) (Jun. 2020) 195-230. 
  21. J. Kovac, et al., Detection and characterization of stainless steel SCC by the analysis of crack related acoustic emission, Ultrasonics 62 (June) (2015) 312-322. 
  22. R.W. Staehle, Historical Views on Stress Corrosion Cracking of Nickel-Based Alloys: the Coriou Effect, European Federation of Corrosion, 2016. 
  23. C.A. Loto, Stress corrosion cracking: characteristics, mechanisms and experimental study, Int. J. Adv. Manuf. Technol. 93 (9-12) (Dec. 2017) 3567-3582. 
  24. M.A. B, Abdel Salam H. Makhlouf, Failure of the metallic structures due to microbiologically induced corrosion and the techniques for protection, in: Handbook of Materials Failure Analysis, Butterworth-Heinemann, 2018, pp. 1-18. 
  25. X. Wang, et al., The influence of copper on the stress corrosion cracking of 304 stainless steel, Appl. Surf. Sci. 478 (October 2018) (2019) 492-498. 
  26. F. Song, Overall Mechanisms of High pH and Near-Neutral pH SCC, Models for Forecasting SCC Susceptible Locations, and Simple Algorithms for Predicting High pH SCC Crack Growth Rates, NACE Int., 2008, pp. 1-33, 8129. 
  27. G.H. Koch, Tests for stress-corrosion cracking, Adv. Mater. Process. 159 (8) (2001) 36-38. 
  28. X. Wu, et al., Development of a numerical model for simulating stress corrosion cracking in spent nuclear fuel canisters, npj Mater. Degrad. 5 (1) (May 2021) 28. 
  29. B. Sutton, et al., Friction stir processing of degraded austenitic stainless steel nuclear fuel dry cask storage system canisters, Minerals, Metals and Materials Series 9783319523330 (2017) 343-351. 
  30. P. Dong, G.G. Scatigno, M.R. Wenman, Effect of salt composition and microstructure on stress corrosion cracking of 316L austenitic stainless steel for dry storage canisters, J. Nucl. Mater. 545 (Mar. 2021), 152572. 
  31. S. Caines, F. Khan, J. Shirokoff, W. Qiu, Experimental design to study corrosion under insulation in harsh marine environments, J. Loss Prev. Process. Ind. 33 (Jan. 2015) 39-51. 
  32. S. Lozano-Perez, J. Dohr, M. Meisnar, K. Kruska, SCC in PWRs: learning from a bottom-up approach, Metall. Mater. Trans. E 1 (2) (Jun. 2014) 194-210. 
  33. J. Kovac, T.J. Marrow, E. Govekar, A. Legat, Detection and characterisation of intergranular stress-corrosion cracking on austenitic stainless steel, Mater. Corros. 63 (8) (2012) 664-673. 
  34. M. Leban, A. Legat, J. Kovac, An Attempt to Detect SCC by Combined Measurements of Electrochemical Noise and Acoustic Emission, vol. 12, 2007, pp. 970-976. 
  35. M.G. Alvarez, P. Lapitz, J. Ruzzante, AE response of type 304 stainless steel during stress corrosion crack propagation, Corrosion Sci. 50 (12) (2008) 3382-3388. 
  36. J. Kovac, et al., Correlations of electrochemical noise, acoustic emission and complementary monitoring techniques during intergranular stress-corrosion cracking of austenitic stainless steel, Corrosion Sci. 52 (6) (2010) 2015-2025. 
  37. M. Shiwa, et al., Acoustic Emission Monitoring of Micro Cell Corrosion Testing in Type 304 Stainless Steels, vol. 7, 2011, pp. 71-78. 
  38. Y. Shao, et al., Analysis of acoustic emission signal characteristics based on the crack pattern of stress corrosion cracking, Proc. Int. Conf. Sens. Technol. ICST (2016). 
  39. X. Li, et al., Characteristic of acoustic emission signal from stress corrosion cracking in low-carbon nitrogen-enhanced stainless steel, Sensor. Mater. 29 (9) (2017) 1305. 
  40. F. Pinal Moctezuma, M. Delgado Prieto, L. Romeral Martinez, Performance analysis of acoustic emission hit detection methods using time features, IEEE Access 7 (2019) 71119-71130. 
  41. R.H. Jones, M.A. Friesel, Using acoustic emission to, Insight 44 (December) (1990) 12-15 [Online]. Available: https://findit.dtu.dk/en/catalog/11377383. 
  42. L. Yang, Front matter, in: Techniques for Corrosion Monitoring, Elsevier, 2021, pp. i-ii. 
  43. R. Goldaran, A. Turer, M. Kouhdaragh, K. Ozlutas, Identification of corrosion in a prestressed concrete pipe utilizing acoustic emission technique, Construct. Build. Mater. 242 (2020) 1-9. 
  44. E.N.L. Jurgen Eisenblatter, Tomoki Shiotani, Christian U. Grosse, Stefan Koppel, Jochen H. Kurz, Acoustic Emission Testing, Springer Berlin Heidelberg, Berlin, Heidelberg, 2008. 
  45. T. Matsuo, K. Sano, Y. Sakakibara, G. Nakayama, Estimation of stress corrosion cracking initiation and propagation in high-pressure , high-temperature water environment utilizing acoustic emission, Mater. Trans. 56 (3) (2015). 
  46. L. Yang, et al., Acoustic emission monitoring and damage mode discrimination of APS thermal barrier coatings under high temperature CMAS corrosion, Surf. Coating. Technol. 304 (Oct. 2016) 272-282. 
  47. Z. Zhang, X. Wu, J. Tan, In-situ monitoring of stress corrosion cracking of 304 stainless steel in high-temperature water by analyzing acoustic emission waveform, Corrosion Sci. 146 (Jan. 2019) 90-98. 
  48. U.K. Chatterjee, Stress corrosion cracking and component failure: causes and prevention, Sadhana 20 (1) (Feb. 1995) 165-184. 
  49. A.A. Babakov, Substitution of M a N G a N E S E a N D nitrogen for nickel in stainless steels, Met. Sci. Heat Treat. Met. 3 (11) (1961) 490-494. 
  50. M. Talebian, et al., Pitting corrosion inhibition of 304 stainless steel in NaCl solution by three newly synthesized carboxylic Schiff bases, Corrosion Sci. 160 (July) (Nov. 2019), 108130. 
  51. B. Raj, P. Kalyanasundaram, S.K. Dewangan, Corrosion Detection and Monitoring in Austenitic Stainless Steels Using Nondestructive Testing and Evaluation Techniques, Alpha Science International Ltd, 2002. 
  52. R. Singh, et al., Mechanical behaviour of 304 austenitic stainless steel processed by room temperature rolling, IOP Conf. Ser. Mater. Sci. Eng. 330 (1) (2018). 
  53. M.A. Kappes, Localized corrosion and stress corrosion cracking of stainless steels in halides other than chlorides solutions: a review, Corrosion Rev. 38 (1) (2020) 1-24. 
  54. T.G. Gooch, Corrosion behavior of welded stainless steel, Weld. J. 75 (5) (1996), 135-s-154-s. 
  55. M.F. McGuire, Austenitic stainless steels, Encyclopedia of Materials: Sci. Technol. 45 (Aug. 01, 2001) 406-410. Elsevier Science Ltd. 
  56. M. Knyazeva, M. Pohl, Duplex steels. Part II: carbides and nitrides, Metallogr. Microstruct. Anal. 2 (5) (Oct. 2013) 343-351. 
  57. A. Khalifeh, Stress corrosion cracking damages, in: Failure Analysis, 2019, pp. 1-18. October. 
  58. O.M. Alyousif, R. Nishimura, On the stress corrosion cracking and hydrogen embrittlement behavior of austenitic stainless steels in boiling saturated magnesium chloride solutions, Int. J. Corros. 2012 (2012) 1-11. 
  59. F. Habashi, History of corrosion research, Cim. Bull. 96 (1067) (2003) 88-94. 
  60. H. Bhadeshia, R. Honeycombe, Stainless steel, in: Steels: Microstructure and Properties, fourth ed., Elsevier, 2017, pp. 343-376. 
  61. D. Feron, Overview of nuclear materials and nuclear corrosion science and engineering, in: Nuclear Corrosion Science and Engineering, Elsevier, 2012, pp. 31-56. 
  62. J.R. Galvele, Transport processes in passivity breakdown-II. Full hydrolysis of the metal ions, Corrosion Sci. 21 (8) (1981) 551-579. 
  63. P. Marcus, M.E. Bussell, XPS study of the passive films formed on nitrogen-implanted austenitic stainless steels, Appl. Surf. Sci. 59 (1) (1992) 7-21. 
  64. G.S. Frankel, L. Stockert, F. Hunkeler, H. Boehni, Metastable pitting of stainless steel, Natl. Assoc. Corros. Eng. 43 (7) (1987) 429-436. 
  65. Y. Xie, J. Zhang, Chloride-induced stress corrosion cracking of used nuclear fuel welded stainless steel canisters: a review, J. Nucl. Mater. 466 (Nov. 2015) 85-93. 
  66. R.M. Carranza, M.A. Rodriguez, Crevice corrosion of nickel-based alloys considered as engineering barriers of geological repositories, npj Mater. Degrad. 1 (1) (2017) 1-8. 
  67. E.D. Mackey, T.F. Seacord, Guidelines for using stainless steel in the water and desalination industries, J. Am. Water Works Assoc. 109 (1) (May 2017) E158-E169. 
  68. H. Yoon, et al., Pitting corrosion resistance and repassivation behavior of Cbearing duplex stainless steel, Metals 9 (9) (Aug. 2019) 930. 
  69. Z. Shen, K. Chen, X. Guo, L. Zhang, A study on the corrosion and stress corrosion cracking susceptibility of 310-ODS steel in supercritical water, J. Nucl. Mater. 514 (2019) 56-65. 
  70. P.J. Maziasz, J.T. Busby, Properties of austenitic steels for nuclear reactor applications, Comprehensive Nuclear Materials 1-5 (2012) 267-283. Elsevier. 
  71. S. Pal, S.S. Bhadauria, P. Kumar, Pitting corrosion behavior of F304 stainless steel under the exposure of ferric chloride solution, J. Bio- Tribo-Corrosion 5 (4) (2019) 1-13, https://doi.org/10.1007/s40735-019-0283-z. 
  72. R.H. Jung, H. Tsuchiya, S. Fujimoto, XPS characterization of passive films formed on Type 304 stainless steel in humid atmosphere, Corrosion Sci. 58 (2012) 62-68. 
  73. P. Roffey, E.H. Davies, The generation of corrosion under insulation and stress corrosion cracking due to sulphide stress cracking in an austenitic stainless steel hydrocarbon gas pipeline, Eng. Fail. Anal. 44 (Sep. 2014) 148-157. 
  74. Z. L, Q.P.T. Shoji, Factors Affecting Stress Corrosion Cracking (SCC) and Fundamental Mechanistic Understanding of Stainless Steels, Woodhead Publ. Limited, 2011, pp. 1-18. 
  75. S. Caines, F. Khan, J. Shirokoff, Analysis of pitting corrosion on steel under insulation in marine environments, J. Loss Prev. Process. Ind. 26 (6) (Nov. 2013) 1466-1483. 
  76. K. Sridharan, T.R. Allen, Corrosion in molten salts, in: Molten Salts Chemistry, Elsevier, 2013, pp. 241-267. 
  77. A.H. Al-Moubaraki, I.B. Obot, Corrosion challenges in petroleum refinery operations: sources, mechanisms, mitigation, and future outlook, J. Saudi Chem. Soc. 25 (12) (2021), 101370. 
  78. P.R. Rhodes, Mechanism of chloride stress corrosion cracking of austenitic stainless steels, Corrosion 25 (11) (Nov. 1969) 462-472. 
  79. W. Hao, et al., Electrochemical characterization and stress corrosion cracking of E690 high strength steel in wet-dry cyclic marine environments, Mater. Sci. Eng., A 710 (October 2017) (2018) 318-328. 
  80. L.S.W.F. Brindley, Chloride stress corrosion cracking of Austenitic stainless steel-Effect of Temperature and pH, Corros. Assosciation Corros. Eng. 14 (1958) 60-64. 
  81. P.C.S. Chen, T. Shinohara, S. Tsujikawa, Applicability of the competition concept in determining the stress corrosion cracking behavior of austenitic stainless steels in chloride solutions, Zair. Kankyo/Corros. Eng. 46 (5) (1997) 313-320. 
  82. R.C. Newman, Understanding the corrosion of stainless steel, Corrosion 57 (12) (2001) 1030-1041. 
  83. J.R. Galvele, Electrochemical Aspects of Stress Corrosion Cracking, Springer Science & Bussiness Media New York, 1995, pp. 233-358. 
  84. P.L. Andresen, Effects of temperature on crack growth rate in sensitized type 304 stainless steel and alloy 600, Corrosion 49 (9) (1993) 714-725. 
  85. C. Cui, R. Ma, E. Martinez-Paneda, A phase field formulation for dissolution-driven stress corrosion cracking, J. Mech. Phys. Solid. 147 (November 2020) (Feb. 2021), 104254. 
  86. H.E. Hanninen, Stress corrosion cracking, Comprehensive Structural Integrity 6 (2003) 1-29. Elsevier. 
  87. Zaki Ahmad, Chapter 4 types of corrosion : materials and environments, in: Principles of Corrosion Engineering and Corrosion Control, 2006, pp. 120-270. 
  88. T.T. Nguyen, et al., A phase field method for modeling stress corrosion crack propagation in a nickel base alloy, Int. J. Solid Struct. 112 (2017) 65-82. 
  89. H.A. Jawan, Some thoughts on stress corrosion cracking of (7xxx) aluminum alloys, Int. J. Mater. Sci. Eng. 7 (2) (2019) 40-51. 
  90. R.N. Parkins, Current understanding of stress-corrosion cracking, Jom 44 (12) (1992) 12-19. 
  91. M. Itakura, H. Kaburaki, C. Arakawa, Branching mechanism of intergranular crack propagation in three dimensions, Phys. Rev. E - Stat. Nonlinear Soft Matter Phys. 71 (5) (2005). 
  92. J. Woodtli, R. Kieselbach, Damage due to hydrogen embrittlement and stress corrosion cracking, Eng. Fail. Anal. 7 (6) (2000) 427-450. 
  93. Z. Li, Y. Lu, X. Wang, Modeling of stress corrosion cracking growth rates for key structural materials of nuclear power plant, J. Mater. Sci. 55 (2) (2020) 439-463. 
  94. M. Alkateb, et al., Crack growth rate analysis of stress corrosion cracking, Teh. Vjesn. 28 (1) (2021) 240-247. 
  95. S.P. Lynch, Mechanistic and fractographic aspects of stress-corrosion cracking (SCC), in: Stress Corrosion Cracking, Elsevier, 2011, pp. 3-89. 
  96. S. Hooshmand Zaferani, R. Miresmaeili, M.K. Pourcharmi, Mechanistic models for environmentally-assisted cracking in sour service, Eng. Fail. Anal. 79 (May) (Sep. 2017) 672-703. 
  97. H.B. Pereira, Z. Panossian, I.P. Baptista, C.R. de F. Azevedo, Investigation of stress corrosion cracking of austenitic, duplex and super duplex stainless steels under drop evaporation test using synthetic seawater, Mater. Res. 22 (2) (2019) 5-8. 
  98. K. Sieradzki, R.C. Newman, R.C. Newman, Brittle behavior of ductile metals during stress-corrosion cracking, Philos. Mag. A Phys. Condens. Matter, Struct. Defects Mech. Prop. 51 (1) (1985) 95-132. 
  99. F.P. Ford, Quantitative prediction of environmentally assisted cracking, Corrosion (Houston, TX, U. S.) 52 (5) (1996) 375-395. 
  100. J.R. Galvele, A stress corrosion cracking mechanism based on surface mobility, Corrosion Sci. 27 (1) (1987) 1-33. 
  101. J.R. Galvele, Surface mobility mechanism of stress-corrosion cracking, Corrosion Sci. 35 (1-4) (1993) 419-434. 
  102. B.N. Popov, Stress corrosion cracking, in: Corrosion Engineering, Elsevier, 2015, pp. 365-450. 
  103. S. Pal, S. Singh, B. Pramod, Studies on stress corrosion cracking of F304 stainless steel in boiling magnesium chloride solution, J. Bio- Tribo-Corrosion 7 (2) (2021) 1-10. 
  104. A. Almubarak, W. Abuhaimed, A. Almazrouee, Corrosion behavior of the stressed sensitized austenitic stainless steels of high nitrogen content in seawater, Int. J. Electrochem. 2013 (2013) 1-7. 
  105. M.O. Speidel, Stress corrosion cracking of stainless steels in NaCI solutions, Metall. Trans. A 12 (May) (1981). 
  106. J. Xu, X. Wu, E. Han, Acoustic emission response of sensitized 304 stainless steel during intergranular corrosion and stress corrosion cracking, Corrosion Sci. (2013). 
  107. M. Song, et al., Radiation damage and irradiation-assisted stress corrosion cracking of additively manufactured 316L stainless steels, J. Nucl. Mater. 513 (Jan. 2019) 33-44. 
  108. S.J. Zinkle, G.S. Was, Materials challenges in nuclear energy, Acta Mater. 61 (3) (Feb. 2013) 735-758. 
  109. R.N. Parkins, Stress corrosion spectrum, Br. Corrosion J. 7 (1) (1972) 15-28. 
  110. K. Wu, et al., In-situ observation and acoustic emission monitoring of the initiation-to- propagation transition of stress corrosion cracking in SUS420J2 stainless steel, Mater. Trans. 60 (10) (2019) 2151-2159. 
  111. M. Mayuzumi, T. Arai, K. Hide, Chloride induced stress corrosion cracking of type 304 and 304L stainless steels in air, Zairyo-to-Kankyo 52 (3) (2003) 166-170. 
  112. X. Xie, et al., Stress corrosion cracking behavior of cold-drawn 316 austenitic stainless steels in simulated PWR environment, Corrosion Sci. 112 (Nov. 2016) 576-584. 
  113. H. Yeom, et al., Cold spray deposition of 304L stainless steel to mitigate chloride-induced stress corrosion cracking in canisters for used nuclear fuel storage, J. Nucl. Mater. 538 (Sep. 2020), 152254. 
  114. D.G. Aggelis, et al., Structural Health Monitoring Damage Detection Systems for Aerospace, Springer International Publishing, Cham, 2021. 
  115. C. Allevato, Utilizing acoustic emission testing to detect high-temperature hydrogen attack (HTHA) in Cr-Mo reformer reactors and piping during thermal gradients, Procedia Eng. 10 (2011) 3552-3560. 
  116. M.G. Nunez, ˜ H. Saboonchi, Acoustic emission, Tech. Corros. Monit. 1 (2021) 305-321, https://doi.org/10.1016/B978-0-08-103003-5.00013-8. 
  117. J. Yan, et al., Oxide cracking behaviour of Cu-added 18%Cr-8%Ni austenitic alloy after steam oxidation, Corrosion Sci. 169 (Jun. 2020). 
  118. A. Terchi, Y.H.J. Au, Acoustic emission signal processing, Meas. Control 34 (8) (Oct. 2001) 240-244. 
  119. R.E. Green, Basic wave analysis of acoustic emission, in: Mechanics of Nondestructive Testing, Springer US, Boston, MA, 1980, pp. 55-76. 
  120. R. Unnorsson, Hit detection and determination in AE bursts, in: Acoustic Emission - Research and Applications, InTech, 2013. 
  121. L. Calabrese, E. Proverbio, A review on the applications of acoustic emission technique in the study of stress corrosion cracking, Corros. Mater. Degrad. 2 (1) (Dec. 2020) 1-33. 
  122. J. Park, J.S. Kim, D.Y. Lee, S.H. Lee, Real-time monitoring of stress corrosion cracking in 304 L stainless steel pipe using acoustic emission, J. Nucl. Mater. 571 (Dec. 2022), 154009. 
  123. K. Prajna, C.K. Mukhopadhyay, Fractional fourier transform based adaptive filtering techniques for acoustic emission signal enhancement, J. Nondestr. Eval. 39 (1) (2020). 
  124. Y. Seid Ahmed, A.F.M. Arif, S.C. Veldhuis, Application of the wavelet transform to acoustic emission signals for built-up edge monitoring in stainless steel machining, Measurement 154 (Mar. 2020), 107478. 
  125. N. Kehtarnavaz, Frequency domain processing, Digital Signal Processing System Design 1 (2008) 175-196. Elsevier. 
  126. N.E. Huang, et al., The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. R. Soc. London. Ser. A Math. Phys. Eng. Sci. 454 (1971) (Mar. 1998) 903-995. 
  127. D. Donnelly, Enhanced empirical mode decomposition, Computational Science and Its Applications - ICCSA 2008 5073 LNCS (PART 2) (2008) 696-706. Berlin, Heidelberg: Springer Berlin Heidelberg. 
  128. H. Ge, et al., Theoretical analysis of empirical mode decomposition, Symmetry 10 (11) (2018). 
  129. A. Zeiler, et al., Empirical mode decomposition - an introduction, The 2010 International Joint Conference on Neural Networks (IJCNN) 1 (Jul. 2010) 1-8. 
  130. A. Yonezu, R. Kusano, X. Chen, On the mechanism of intergranular stress corrosion cracking of sensitized stainless steel in tetrathionate solution, J. Mater. Sci. 48 (6) (Mar. 2013) 2447-2453. 
  131. M.T.I. Khan, Structural health monitoring by acoustic emission technique, in: Structural Health Monitoring from Sensing to Processing, InTech, 2018. 
  132. L. Tang, et al., Defect localization on rolling element bearing stationary outer race with acoustic emission technology, Appl. Acoust. 182 (Nov. 2021), 108207. 
  133. V. Soltangharaei, et al., Acoustic emission technique to identify stress corrosion cracking damage, Struct. Eng. Mech. 75 (6) (2020) 723-736. 
  134. C. Jomdecha, A. Prateepasen, P. Kaewtrakulpong, Study on source location using an acoustic emission system for various corrosion types, NDT E Int. 40 (8) (Dec. 2007) 584-593. 
  135. Z. Zhou, et al., Experimental study on the location of an acoustic emission source considering refraction in different media, Sci. Rep. 7 (1) (Aug. 2017) 7472. 
  136. P.T. Cole, J.R. Watson, Acoustic emission for corrosion detection, Adv. Mater. Res. 13-14 (2006) 231-236. 
  137. R.M. Meyer, A.F. Pardini, B.D. Hanson, K.B. Sorenson, Review of NDE Methods for Detection and Monitoring of Atmospheric SCC in Welded Canisters for the Storage of Used Nuclear Fuel (No. PNNL-22158), Pacific Northwest National Laboratory, Richland, WA (United States), Jan, 2013. 
  138. C. Jirarungsatian, A. Prateepasen, Pitting and uniform corrosion source recognition using acoustic emission parameters, Corrosion Sci. 52 (1) (Jan. 2010) 187-197. 
  139. G. Du, W. Wang, S. Song, S. Jin, Detection of corrosion on 304 stainless steel by acoustic emission measurement, Anti-corrosion Methods & Mater. 57 (3) (2010) 126-132.
  140. B. Raj, B.B. Jha, P. Rodriguez, Frequency spectrum analysis of acoustic emission signal obtained during tensile deformation and fracture of an AISI 316 type stainless steel, Acta Metall. 37 (8) (1989) 2211-2215. 
  141. W. Hwang, et al., Acoustic emission characteristics of stress corrosion cracks in a type 304 stainless steel tube, Nucl. Eng. Technol. 47 (4) (2015) 454-460. 
  142. L. Calabrese, et al., SCC damage evolution on martensitic stainless steel by using acoustic emission technique, Corrosion Eng. Sci. Technol. 50 (5) (Aug. 2015) 364-371. 
  143. F. Delaunois, A. Tshimombo, V. Stanciu, V. Vitry, Monitoring of chloride stress corrosion cracking of austenitic stainless steel: identification of the phases of the corrosion process and use of a modified accelerated test, Eval. Progr. Plann. (-11) (2016) 1. 
  144. L. Calabrese, et al., Identification of damage evolution during SCC on 17-4 PH stainless steel by combining electrochemical noise and acoustic emission techniques, Corrosion Sci. 98 (Sep. 2015) 573-584. 
  145. F. Du, S. Pan, D. Li, Damage evaluation and failure mechanism analysis of steel tube confined reinforced-concrete columns by acoustic emission technology, Lat. Am. J. Solid. Struct. 15 (11) (Nov. 2018) 1-14, https://doi.org/10.1590/1679-78255339. 
  146. H. Bi, et al., Evaluation of the acoustic emission monitoring method for stress corrosion cracking on aboveground storage tank floor steel, Int. J. Pres. Ves. Pip. 179 (September 2019) (2020) 1-7, https://doi.org/10.1016/j.ijpvp.2019.104035. 
  147. Z. Zhang, Z. Zhang, J. Tan, X. Wu, Quantitatively related acoustic emission signal with stress corrosion crack growth rate of sensitized 304 stainless steel in high-temperature water, Corrosion Sci. 157 (January) (Aug. 2019) 79-86. 
  148. D. Li, W. Yang, W. Zhang, Cluster analysis of stress corrosion mechanisms for steel wires used in bridge cables through acoustic emission particle swarm optimization, Ultrasonics 77 (May 2017) 22-31. 
  149. K. Wu, W.S. Jung, J.W. Byeon, Acoustic emission of hydrogen bubbles on the counter electrode during pitting corrosion of 304 stainless steel, Mater. Trans. 56 (4) (2015) 587-592. 
  150. G. Du, et al., Detection and characterization of stress-corrosion cracking on 304 stainless steel by electrochemical noise and acoustic emission techniques, Corrosion Sci. 53 (2011) 2918-2926. 
  151. H. Shaikh, et al., Evaluation of stress corrosion cracking phenomenon in an AISI type 316LN stainless steel using acoustic emission technique, Corrosion Sci. 49 (2) (2007) 740-765. 
  152. F. Ferrer, E. Schille, D. Verardo, J. Goudiakas, Sensitivity of acoustic emission for the detection of stress corrosion cracking during static U-bend tests on a 316L stainless steel in hot concentrated magnesium chloride media, J. Mater. Sci. 37 (13) (2002) 2707-2712.