DOI QR코드

DOI QR Code

Research on the cable-driven endoscopic manipulator for fusion reactors

  • Guodong Qin (Institute of Plasma Physics, Chinese Academy of Science) ;
  • Yong Cheng (Institute of Plasma Physics, Chinese Academy of Science) ;
  • Aihong Ji (Lab of Locomotion Bioinspiration and Intelligent Robots, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics & Astronautics) ;
  • Hongtao Pan (Institute of Plasma Physics, Chinese Academy of Science) ;
  • Yang Yang (Institute of Plasma Physics, Chinese Academy of Science) ;
  • Zhixin Yao (Institute of Plasma Physics, Chinese Academy of Science) ;
  • Yuntao Song (Institute of Plasma Physics, Chinese Academy of Science)
  • Received : 2023.05.08
  • Accepted : 2023.10.18
  • Published : 2024.02.25

Abstract

In this paper, a cable-driven endoscopic manipulator (CEM) is designed for the Chinese latest compact fusion reactor. The whole CEM arm is more than 3000 mm long and includes end vision tools, an endoscopic manipulator/control system, a feeding system, a drag chain system, support systems, a neutron shield door, etc. It can cover a range of ±45° of the vacuum chamber by working in a wrap-around mode, etc., to meet the need for observation at any position and angle. By placing all drive motors in the end drive box via a cable drive, cooling, and radiation protection of the entire robot can be facilitated. To address the CEM motion control problem, a discrete trajectory tracking method is proposed. By restricting each joint of the CEM to the target curve through segmental fitting, the trajectory tracking control is completed. To avoid the joint rotation angle overrun, a joint limit rotation angle optimization method is proposed based on the equivalent rod length principle. Finally, the CEM simulation system is established. The rationality of the structure design and the effectiveness of the motion control algorithm are verified by the simulation.

Keywords

Acknowledgement

This work is supported by the National Natural Science Foundation of China (Grant Nos. 12305251 and 11905147) and the Comprehensive Research Facility for Fusion Technology Program of China (Grant Nos. 2018-000052-73-01-001228).

References

  1. T. Siegel, E. Kolokotronis, A. Cifuentes, et al., In-vessel viewing system prototype performance measurements and simulation of measurement quality across the ITER in-vessel components, Fusion Eng. Des. 146 (2019) 2348-2352.  https://doi.org/10.1016/j.fusengdes.2019.03.187
  2. C. Neri, P. Costa, M. Ferri De Collibus, et al., ITER in-vessel viewing system design and assessment activities, Fusion Eng. Des. 86 (9-11) (2011) 1954-1957.  https://doi.org/10.1016/j.fusengdes.2011.02.047
  3. M.P. Nemitz, P. Mihaylov, T.W. Barraclough, et al., Using voice coils to actuate modular soft robots: wormbot, an example, Soft Robot. 3 (4) (2016) 198-204.  https://doi.org/10.1089/soro.2016.0009
  4. R. Buckingham, A. Graham, Nuclear snake-arm robots, Ind. Robot 39 (1) (2012) 6-11.  https://doi.org/10.1108/01439911211192448
  5. X. Liu, L. Cao, L. Li, et al., Conceptual design and analysis of diverter target in CFETR, Nucl. Fusion Plasma Phys. 37 (1) (2017) 81-86. 
  6. R. Buckingham, Snake arm robots, Ind. Robot 29 (3) (2013) 242-245.  https://doi.org/10.1108/01439910210425531
  7. R. Bogue, Robots in the nuclear industry: a review of technologies and applications, Ind. Robot 38 (2) (2011) 113-118.  https://doi.org/10.1108/01439911111106327
  8. R.O. Buckingham, A.C. Graham, Dexterous manipulators for nuclear inspection and maintenance - case study, in: 2010 1st International Conference on Applied Robotics for the Power Industry, 2010, pp. 1-6. 
  9. Z. Mu, W. Xu, B. Liang, Avoidance of multiple moving obstacles during active debris removal using a redundant space manipulator, Int. J. Control Autom. Syst. 15 (2) (2017) 815-826.  https://doi.org/10.1007/s12555-015-0455-7
  10. A.C. Lai, P. Loreti, P. Vellucci, A fibonacci control system with application to hyper-redundant manipulators, Math. Control, Signals, Syst. 28 (15) (2016) 1-32.  https://doi.org/10.1007/s00498-015-0152-3
  11. L. Gargiulo, P. Bayetti, V. Bruno, et al., Operation of an ITER relevant inspection robot on Tore Supra tokamak, Fusion Eng. Des. 84 (2-6) (2009) 220-223.  https://doi.org/10.1016/j.fusengdes.2008.11.043
  12. S. Shi, Y. Song, Y. Cheng, et al., Design and implementation of storage cask system for EAST Articulated Inspection Arm (AIA) robot, J. Fusion Energy 34 (4) (2015) 711-716.  https://doi.org/10.1007/s10894-015-9869-8
  13. H. Pan, Y. Song, J. Zhang, et al., Design and implementation of cask system for EAST remote maintenance, Vacuum 136 (2016) 64-72.  https://doi.org/10.1016/j.vacuum.2016.11.008
  14. S. Shi, Y. Song, Y. Cheng, et al., Conceptual design main progress of EAST Articulated Maintenance Arm (EAMA) system, Fusion Eng. Des. 104 (3) (2016) 40-45.  https://doi.org/10.1016/j.fusengdes.2016.02.005
  15. C.A. Klein, C.H. Huang, Review of pseudoinverse control for use with kinematically redundant manipulators, IEEE T. Syst. Man. Cy. 13 (2) (1983) 245-250.  https://doi.org/10.1109/TSMC.1983.6313123
  16. J. Barrientos-Diez, X. Dong, D. Axinte, et al., Real-time kinematics of continuum robots: modelling and validation, Robotics. Cim-Int. Manufact. 67 (2021), 102019. 
  17. T.F. Chan, R.V. Dubey, A weighted least-norm solution-based scheme for avoiding joint limits for redundant joint manipulators, IEEE Trans. Robot. Autom. 11 (2) (1995) 286-292.  https://doi.org/10.1109/70.370511
  18. K. Li, Q. Hu, J. Liu, Path planning of mobile robot based on improved multi-objective genetic algorithm, Wireless Commun. Mobile Comput. (2021) 1-12. 
  19. G.S. Chirikjian, J.W. Burdick, Kinematically optimal hyper-redundant manipulator configurations, IEEE Trans. Robot. Autom. 11 (6) (1995) 794-806.  https://doi.org/10.1109/70.478427
  20. S. Song, Z. Li, Q.H. Meng, et al., Real-time shape estimation for wire-driven flexible robots with multiple bending sections based on quadratic bezier curves, IEEE Sensor. J. 15 (11) (2015) 6326-6334.  https://doi.org/10.1109/JSEN.2015.2456181
  21. M. Wang, X. Dong, W. Ba, et al., Design, modelling and validation of a novel extra slender continuum robot for in-situ inspection and repair in aeroengine, Robot. Cim-Int. Manuf. 67 (2021), 102054. 
  22. S. Yahya, M. Moghavvemi, H.A.F. Mohamed, Geometrical approach of planar hyper-redundant manipulators: inverse kinematics, path planning and workspace, Simulat. Model. Pract. Theor. 19 (1) (2011) 406-422.  https://doi.org/10.1016/j.simpat.2010.08.001
  23. S.O. Park, M.C. Lee, J. Kim, Trajectory planning with collision avoidance for redundant robots using jacobian and artificial potential field-based real-time inverse kinematics, Int. J. Control Autom. 18 (2020) 2095-2107.  https://doi.org/10.1007/s12555-019-0076-7
  24. M.H. FarzanehKaloorazi, I.A. Bonev, L. Birglen, Simultaneous path placement and trajectory planning optimization for a redundant coordinated robotic workcell, Mech. Mach. Theor. 130 (2018) 346-362.  https://doi.org/10.1016/j.mechmachtheory.2018.08.022
  25. S. Cobos-Guzman, D. Palmer, D. Axinte, Kinematic model to control the end-effector of a continuum robot for multi-axis processing, Robotica 35 (1) (2017) 224-240.  https://doi.org/10.1017/S0263574715000946
  26. D. Palmer, S. Cobos-Guzman, D. Axinte, Real-time method for tip following navigation of continuum snake arm robots, Robot. Autonom. Syst. 62 (10) (2014) 1478-1485.  https://doi.org/10.1016/j.robot.2014.05.013
  27. R.L. Williams, G. Tamasi, Follow-the-leader control for the payload inspection and processing system, in: ASME 1996 Design Engineering Technical Conferences and Computers in Engineering Conference, 1996, pp. 18-22. 
  28. Q.K. Han, L.N. Hao, H. Zhang, et al., Achievement of chaotic synchronization trajectories of master-slave manipulators with feedback control strategy, Acta Mech. Sin. 26 (3) (2010) 433-439.  https://doi.org/10.1007/s10409-010-0340-9
  29. G. Dubus, Design Description Document (DDD) 57-METS IVVS Metrology System, 2019, pp. 1-63. Available on F4E IDM as F4E_D_2J7FRH. 
  30. C. Neri, A. Coletti, M.F. de Collibus, et al., The upgraded laser in-vessel viewing system (IVVS) for ITER, Fusion Eng. Des. 84 (2-6) (2009) 224-228.  https://doi.org/10.1016/j.fusengdes.2009.01.096