Acknowledgement
This work is supported by the National Natural Science Foundation of China (Grant Nos. 12305251 and 11905147) and the Comprehensive Research Facility for Fusion Technology Program of China (Grant Nos. 2018-000052-73-01-001228).
References
- T. Siegel, E. Kolokotronis, A. Cifuentes, et al., In-vessel viewing system prototype performance measurements and simulation of measurement quality across the ITER in-vessel components, Fusion Eng. Des. 146 (2019) 2348-2352. https://doi.org/10.1016/j.fusengdes.2019.03.187
- C. Neri, P. Costa, M. Ferri De Collibus, et al., ITER in-vessel viewing system design and assessment activities, Fusion Eng. Des. 86 (9-11) (2011) 1954-1957. https://doi.org/10.1016/j.fusengdes.2011.02.047
- M.P. Nemitz, P. Mihaylov, T.W. Barraclough, et al., Using voice coils to actuate modular soft robots: wormbot, an example, Soft Robot. 3 (4) (2016) 198-204. https://doi.org/10.1089/soro.2016.0009
- R. Buckingham, A. Graham, Nuclear snake-arm robots, Ind. Robot 39 (1) (2012) 6-11. https://doi.org/10.1108/01439911211192448
- X. Liu, L. Cao, L. Li, et al., Conceptual design and analysis of diverter target in CFETR, Nucl. Fusion Plasma Phys. 37 (1) (2017) 81-86.
- R. Buckingham, Snake arm robots, Ind. Robot 29 (3) (2013) 242-245. https://doi.org/10.1108/01439910210425531
- R. Bogue, Robots in the nuclear industry: a review of technologies and applications, Ind. Robot 38 (2) (2011) 113-118. https://doi.org/10.1108/01439911111106327
- R.O. Buckingham, A.C. Graham, Dexterous manipulators for nuclear inspection and maintenance - case study, in: 2010 1st International Conference on Applied Robotics for the Power Industry, 2010, pp. 1-6.
- Z. Mu, W. Xu, B. Liang, Avoidance of multiple moving obstacles during active debris removal using a redundant space manipulator, Int. J. Control Autom. Syst. 15 (2) (2017) 815-826. https://doi.org/10.1007/s12555-015-0455-7
- A.C. Lai, P. Loreti, P. Vellucci, A fibonacci control system with application to hyper-redundant manipulators, Math. Control, Signals, Syst. 28 (15) (2016) 1-32. https://doi.org/10.1007/s00498-015-0152-3
- L. Gargiulo, P. Bayetti, V. Bruno, et al., Operation of an ITER relevant inspection robot on Tore Supra tokamak, Fusion Eng. Des. 84 (2-6) (2009) 220-223. https://doi.org/10.1016/j.fusengdes.2008.11.043
- S. Shi, Y. Song, Y. Cheng, et al., Design and implementation of storage cask system for EAST Articulated Inspection Arm (AIA) robot, J. Fusion Energy 34 (4) (2015) 711-716. https://doi.org/10.1007/s10894-015-9869-8
- H. Pan, Y. Song, J. Zhang, et al., Design and implementation of cask system for EAST remote maintenance, Vacuum 136 (2016) 64-72. https://doi.org/10.1016/j.vacuum.2016.11.008
- S. Shi, Y. Song, Y. Cheng, et al., Conceptual design main progress of EAST Articulated Maintenance Arm (EAMA) system, Fusion Eng. Des. 104 (3) (2016) 40-45. https://doi.org/10.1016/j.fusengdes.2016.02.005
- C.A. Klein, C.H. Huang, Review of pseudoinverse control for use with kinematically redundant manipulators, IEEE T. Syst. Man. Cy. 13 (2) (1983) 245-250. https://doi.org/10.1109/TSMC.1983.6313123
- J. Barrientos-Diez, X. Dong, D. Axinte, et al., Real-time kinematics of continuum robots: modelling and validation, Robotics. Cim-Int. Manufact. 67 (2021), 102019.
- T.F. Chan, R.V. Dubey, A weighted least-norm solution-based scheme for avoiding joint limits for redundant joint manipulators, IEEE Trans. Robot. Autom. 11 (2) (1995) 286-292. https://doi.org/10.1109/70.370511
- K. Li, Q. Hu, J. Liu, Path planning of mobile robot based on improved multi-objective genetic algorithm, Wireless Commun. Mobile Comput. (2021) 1-12.
- G.S. Chirikjian, J.W. Burdick, Kinematically optimal hyper-redundant manipulator configurations, IEEE Trans. Robot. Autom. 11 (6) (1995) 794-806. https://doi.org/10.1109/70.478427
- S. Song, Z. Li, Q.H. Meng, et al., Real-time shape estimation for wire-driven flexible robots with multiple bending sections based on quadratic bezier curves, IEEE Sensor. J. 15 (11) (2015) 6326-6334. https://doi.org/10.1109/JSEN.2015.2456181
- M. Wang, X. Dong, W. Ba, et al., Design, modelling and validation of a novel extra slender continuum robot for in-situ inspection and repair in aeroengine, Robot. Cim-Int. Manuf. 67 (2021), 102054.
- S. Yahya, M. Moghavvemi, H.A.F. Mohamed, Geometrical approach of planar hyper-redundant manipulators: inverse kinematics, path planning and workspace, Simulat. Model. Pract. Theor. 19 (1) (2011) 406-422. https://doi.org/10.1016/j.simpat.2010.08.001
- S.O. Park, M.C. Lee, J. Kim, Trajectory planning with collision avoidance for redundant robots using jacobian and artificial potential field-based real-time inverse kinematics, Int. J. Control Autom. 18 (2020) 2095-2107. https://doi.org/10.1007/s12555-019-0076-7
- M.H. FarzanehKaloorazi, I.A. Bonev, L. Birglen, Simultaneous path placement and trajectory planning optimization for a redundant coordinated robotic workcell, Mech. Mach. Theor. 130 (2018) 346-362. https://doi.org/10.1016/j.mechmachtheory.2018.08.022
- S. Cobos-Guzman, D. Palmer, D. Axinte, Kinematic model to control the end-effector of a continuum robot for multi-axis processing, Robotica 35 (1) (2017) 224-240. https://doi.org/10.1017/S0263574715000946
- D. Palmer, S. Cobos-Guzman, D. Axinte, Real-time method for tip following navigation of continuum snake arm robots, Robot. Autonom. Syst. 62 (10) (2014) 1478-1485. https://doi.org/10.1016/j.robot.2014.05.013
- R.L. Williams, G. Tamasi, Follow-the-leader control for the payload inspection and processing system, in: ASME 1996 Design Engineering Technical Conferences and Computers in Engineering Conference, 1996, pp. 18-22.
- Q.K. Han, L.N. Hao, H. Zhang, et al., Achievement of chaotic synchronization trajectories of master-slave manipulators with feedback control strategy, Acta Mech. Sin. 26 (3) (2010) 433-439. https://doi.org/10.1007/s10409-010-0340-9
- G. Dubus, Design Description Document (DDD) 57-METS IVVS Metrology System, 2019, pp. 1-63. Available on F4E IDM as F4E_D_2J7FRH.
- C. Neri, A. Coletti, M.F. de Collibus, et al., The upgraded laser in-vessel viewing system (IVVS) for ITER, Fusion Eng. Des. 84 (2-6) (2009) 224-228. https://doi.org/10.1016/j.fusengdes.2009.01.096