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EXISTENCE OF A SOLUTION OF THE INTEGRAL EQUATIONS

ON TRIPLED QUASI-METRIC SPACES WITH APPLICATIONS

Ghorban Khalilzadeh Ranjbar

Abstract. In this paper we study a tripled quasi-metric with new fixed point
theorems around β-implicit contractions in tripled quasi-metric spaces. We give an
example on a solution of a integral equations.

1. Introduction and Preliminaries

It is well known that passing from metric spaces to quasi-metric spaces, drop-

ping the requirement that the metric function verifies d(x, y) = d(y, x) carries with

it immediate consequences to the general theory. For instance, the topological no-

tions of quasi-metric spaces, such as, limit, continuity, completeness all should be

re-considered under the left and right approaches since the quasi-metric is not sym-

metric. Furthermore, uniqueness of limit of a sequence should be examined carefully

since one can easily consider a sequence which has a left limit and right limit which

are not equal to each other. Thats why a few results on fixed points in such spaces

are considered.

In this paper, we introduce tripled quasi-metric and prove many fixed point results

in tripled quasi-metric. We come to the below of the definition of quasi metric space

previously defined by a mathematician.

Definition 1.1. Let Y be a non-empty and let d : Y × Y → [0, 1) be a function

which satisfies:

(d1) d(u, v) = 0 if and only if u = v;

(d2) d(u, v) ≤ d(u,w) + d(w, v).

Then d is called a quasi-metric and the pair (Y, d) is called a quasi-metric space.
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Remark 1.2. Any metric space is a quasi-metric space, but the converse is not true

in general.

Definition 1.3. Let (Y, d) be a quasi-metric space, {yn} be a sequence in Y , and

y ∈ Y . The sequence {yn} converges to y if and only if

(1.1) lim
n→∞

d(yn, y) = lim
n→∞

d(y, yn) = 0.

Remark 1.4. A quasi-metric space is Hausdorff, that is, we have the uniqueness of

limit of a convergent sequence.

Definition 1.5. Let (Y, d) be a quasi-metric space and {yn} be a sequence in Y .

We say that {yn} is left-Cauchy if and only if for every ε > 0, there exists a positive

integer N = N(ε) such that d(yn, ym) < ε for all n ≥ m > N .

Definition 1.6. Let (Y, d) be a quasi-metric space and {yn} be a sequence in Y .

We say that {yn} is right-Cauchy if and only if for every ε > 0 there exists a positive

integer N = N(ε) such that d(yn, ym) < ε for all m ≥ n > N .

Definition 1.7. Let (Y, d) be a quasi-metric space and {yn} be a sequence in Y .

We say that {yn} is Cauchy if and only if for every ε > 0 there exists a positive

integer N = N(ε) such that d(yn, ym) < ε for all m ≥ n > N .

Remark 1.8. A sequence {yn} in a quasi-metric space is Cauchy if and only if it is

left-Cauchy and right-Cauchy.

Definition 1.9. Let (Y, d) be a quasi-metric space. We say that

1) (Y, d) is left-complete if and only if each left-Cauchy sequence in Y is con-

vergent.

2) (Y, d) is right-complete if and only if each right-Cauchy sequence in Y is

convergent.

3) (Y, d) is complete if and only if each Cauchy sequence in Y is convergent.

Definition 1.10. Let (Y, d) be a quasi-metric space. We say f : Y → Y be con-

tinuous if for each sequence {yn} in Y converging to y ∈ Y , the sequence {fyn}
converges to fy, that is,

(1.2) lim
n→∞

d(fyn, fy) = lim
n→∞

d(fy, fyn) = 0.

On the other hand the study of fixed point for mappings satisfying on implicit

relation in initiated and studies by Popa [21, 22]. It leads to interesting known fixed
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point results. Following Popa approach , many authors proved some fixed point,

common fixed point and coincidence point results in various ambient spaces, see

[14, 15, 16, 17, 19].

In the literature, there are several types of implicit contraction mappings, where

many nice consequences of fixed point theorems could be derived.

First, denote the set of functions ψ : [0,∞) → [0,∞) satisfying:

(ψ1) ψ is nondecreasing,

(ψ2)
∑∞

n=1 ψ
n(t) < ∞ for each t ∈ R+, where ψn is the nth iterate of ψ. We

show by Ψ, the set of all function ψ.

Remark 1.11. It is simple to see that if ψ ∈ Ψ, then ψ(t) < t for any t > 0.

2. Main Results

Definition 2.1. Let Y be a nonempty set and let d : Y × Y × Y → [0,∞) be a

function which satisfies

(d1) d(x, y, z) = 0 if and only if x = y = z;

(d2) d(x, y, z) ≤ d(x, a1, a2) + d(y, a3, a4) + d(z, a2, a3) for all x, y, z ∈ Y and

ai ∈ Y for i = 1, 2, 3, 4.

Thus d is called a tripled quasi-metric and the pair (Y, d) is called a tripled quasi-

metric space.

Example 2.2. Let Y = [0,∞) endowed with the tripled quasi metric, d(x, y, z) =

|x|+ |y| if x ̸= y, x ̸= z, y ̸= z and d(x, y, z) = 0 whenever x = y = z.

Definition 2.3. Let (Y, d) de a tripled quasi-metric, {yn} be a sequence in Y , and

x ∈ Y . The sequence {yn} converges to x if and only if

lim
n→∞

d(yn, x, x) = lim
n→∞

d(x, x, yn) = lim
n→∞

d(yn, yn, x) = lim
n→∞

d(x, yn, yn) = 0.

Definition 2.4. Let (Y, d) be a tripled quasi-metric space and {yn} be a sequence

in Y . We say that {yn} is left-Cauchy if and only if for every ε > 0 there exists a

positive integer N such that d(yn, ym, ym) < ε for all n ≥ m > n.

Definition 2.5. Let (Y, d) be a tripled quasi-metric space and {yn} be a sequence

in Y . We say that {yn} is right-Cauchy if and only if for every ε > 0 there exists a

positive integer N such that d(yn, ym, ym) < ε for all m ≥ n > N .
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Definition 2.6. Let (Y, d) be a tripled quasi-metric space. We say that {yn} is

Cauchy if and only if for every ε > 0 there exists a positive integer N , such that

d(yn, ym, ym) < ε for all n,m > N .

Definition 2.7. Let (Y, d) be a tripled quasi-metric space. We say that

(1) (Y, d) is left-complete if and only if each left-Cauchy sequence in Y is con-

vergent;

(2) (Y, d) is right-complete if and only if each right-Cauchy sequence in Y is

convergent;

(3) (Y, d) is left-complete if and only if each Cauchy sequence in Y is convergent.

Definition 2.8. Let (Y, d) be a tripled quasi metric space. The map f : Y → Y is

continuous if for each sequence {yn} in Y converging to y ∈ Y , the sequence {fyn}
converges to fy, such that

lim
n→∞

d(fyn, fy, fy) = lim
n→∞

d(fy, fy, fyn) = lim
n→∞

d(fyn, fyn, fy)

= lim
n→∞

d(fy, fyn, fyn) = 0.

Definition 2.9. Let T : Y → Y and d : Y × Y × Y → [0,∞) be mappings. We say

that the self-mapping T on Y is β admissible, if for all u, v, w ∈ Y we have

(2.1) β(u, v, w) ≥ 1 ⇒ β(Tu, Tv, Tw) ≥ 1.

Definition 2.10. Let (Y, d) be a quasi-metric space and f : Y → Y be a given

mapping. We say that f is an β-implicit contractive mapping if there exist two

functions β : Y × Y × Y → [0,∞) and ϕ ∈ Ψ such that

ϕ
(
β(x, y, z)d(fx, fy, fz), d(x, y, z), d(x, fx, f2x), d(y, fy, f2y), d(z, fz, f2z),

d(x, fx, z), d(y, fx, y), d(z, fy, z)
)
≤ 0

for all x, y, z ∈ Y .

Definition 2.11. Let Φ be the set of all continuous functions ϕ(t1, t2, . . . , t8) : R8
+ →

R such that

(Φ1) ϕ is nondecreasing in variable t1;

(Φ2) There exists f1 ∈ Ψ such that for all u, v, w ≥ 0, ϕ(u, v, v, u, w, v, 0, 0) ≤ 0

implies that u ≤ f1(v);

(Φ3) There exists f2 ∈ Ψ such that for all t, t1, t2, t3 > 0 ϕ(t, t, 0, 0, 0, t1, t2, t3) ≤ 0

implies that t ≤ f2(t3).
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Example 2.12. Let

ϕ(t1, t2, . . . , t8) = t1 − a1t2 − a2t3 − a3t4 − a4t5 − a5t6 − a6t7 − a7t8,

where ai ≥ 0 for i = 1, 2, . . . , 7 and
∑7

i=1 ai < 1.

Example 2.13. Let

ϕ(t1, t2, . . . , t8) = t1 − kmax {t2, . . . , t8} ,

where k ∈ [0, 1).

Theorem 2.14. Let (Y, d) be a complete tripled quasi-metric space and g : Y → Y

be an β-implicit contractive mapping. Let that

(i) g is β-admissible;

(ii) There exists x0 ∈ Y such that β(x0, gx0, g
2x0) ≥ 1 and β(g2x0, gx0, x0) ≥ 1;

(iii) g is continuous.

Then there exists λ ∈ Y such that gλ = λ.

Proof. By assumption (ii), exists y0 ∈ Y such that

β(y0, gy0, g
2y0) ≥ 1 and β(g2y0, gy0, y0) ≥ 1.

We define a sequence {yn} in Y by yn+1 = gyn = gn+1y0 for all n ≥ 0. Let that

xn0 = xn0+1 for some n0. So the proof is complete, because,

u = xn0 = xn0+1 = gxn0 = gu.

Consequently, throughout the proof, we assume that yn ̸= yn+1 for any n.

Since g is β-admissible and β(y0, y1, y2) = β(y0, gy0, g
2y0) ≥ 1, so observe that

β(gy0, gy1, gy2) ≥ 1. By repeating the process above, we obtain that

(2.2) β (yn, yn+1, yn+2) ≥ 1

for any n ∈ N ∪ {0}. Now, consider the case where β(g2y0, gy0, y0) ≥ 1. By using

the same way above, we get that

(2.3) β (yn+2, yn+1, yn) ≥ 1

for all n ∈ N ∪ {0}. By using (1.2) we get

ϕ
(
β (yn−1, yn, yn+1) d (gyn−1, gyn, gyn+1), d (yn−1, yn, yn+1) , d

(
yn−1, gyn−1, g

2yn−1

)
,

d
(
yn, gyn, g

2yn
)
, d

(
yn+1, gyn+1, g

2yn+1

)
,

d (yn−1, gyn−1, yn+1) , d (yn, gyn−1, yn) ,

d (yn+1, gyn, yn+1)
)
≤ 0,
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that is

ϕ
(
β (yn−1, yn, yn+1) d (yn, yn+1, yn+2), d (yn−1, yn, yn+1) , d (yn−1, yn, yn+1) ,

d (yn, yn+1, yn+2) , d (yn+1, yn+2, yn+3) ,

d (yn−1, yn, yn+1) , d (yn, yn, yn) ,

d (yn+1, yn+1, yn+1)
)
≤ 0,

and

ϕ
(
β (yn−1, yn, yn+1) d (yn, yn+1, yn+2), d (yn−1, yn, yn+1) , d (yn−1, yn, yn+1) ,

d (yn, yn+1, yn+2) , d (yn+1, yn+2, yn+3) ,

d (yn−1, yn, yn+1) , 0, 0
)
≤ 0.

By (2.2) and from (Φ1) in the first variable, we have

ϕ
(
d (yn, yn+1, yn+2), d (yn−1, yn, yn+1) , d (yn−1, yn, yn+1) , d (yn, yn+1, yn+2) ,

d (yn+1, yn+2, yn+3) , d (yn−1, yn, yn+1) , 0, 0
)
≤ 0.

Due to (Φ2), we obtain d (yn, yn+1, yn+2) ≤ f1 (d (yn−1, yn, yn+1)). If we go on like

this, we get

(2.4) d (yn, yn+1, yn+2) ≤ fn1 (d (y0, y1, y2)) .

We prove that {yn} is a Cauchy sequence in the tripled quasi-metric space (Y, d).

Take m > n from (d2), we have

d (yn, ym, ym) ≤ d (yn, yn+1, yn+2) + d (ym, ym, ym) + d (ym, yn+2, ym)

≤ fn1
(
d (y0, y1, y2)

)
+ d (ym, yn+2, ym)

≤ fn1
(
d (y0, y1, y2)

)
+
[
d (ym, ym, ym) + d (yn+2, yn+3, yn+4) + d (ym, ym, yn+3)

]
≤ fn1

(
d (y0, y1, y2)

)
+ fn+2

1

(
d (y0, y1, y2)

)
+ d (ym, ym, ym)

+ d (ym, ym, ym) + d (yn+3, ym, ym)

= fn1
(
d (y0, y1, y2)

)
+ fn+2

1

(
d (y0, y1, y2)

)
+ d (yn+3, ym, ym)

≤ fn1
(
d (y0, y1, y2)

)
+ fn+2

1

(
d (y0, y1, y2)

)
+
[
d (yn+3, yn+4, yn+5) + d (ym, ym, ym) + d (ym, yn+4, ym)

]
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≤ fn1
(
d (y0, y1, y2)

)
+ fn+2

1

(
d (y0, y1, y2)

)
+ fn+3

1

(
d (y0, y1, y2)

)
+ d (ym, yn+4, ym)

≤ fn1
(
d (y0, y1, y2)

)
+ fn+2

1

(
d (y0, y1, y2)

)
+ fn+3

1

(
d (y0, y1, y2)

)
+ d (ym, ym, ym) + d (yn+4, yn+5, yn+6) + d (ym, ym, yn+5) .

Let n+ p = m, then we have

d (yn, ym, ym) ≤ fn1
(
d (y0, y1, y2)

)
+ fn+2

1

(
d (y0, y1, y2)

)
+ fn+3

1

(
d (y0, y1, y2)

)
+ fn+4

1

(
d (y0, y1, y2)

)
+ . . .+ fn+p

1

(
d (y0, y1, y2)

)
≤

∞∑
k=n

fk1
(
d (y0, y1, y2)

)

(2.5)

which implies that d (yn, ym, ym) → 0, when n,m → ∞, but f1 ∈ Ψ. It follows

that {yn} is a right-Cauchy sequence. By similarly way we can prove that, {yn}
is a left-Cauchy sequence. There fore {yn} is a Cauchy sequence in (Y, d). Since,

(Y, d) is tripled quasi-complete, then there exists a point λ in Y , such that yn → λ

as n→ ∞, that is

lim
n→∞

d (yn, y, y) = lim
n→∞

d (yn, yn, y) = lim
n→∞

d (y, y, yn) = lim
n→∞

d (y, yn, yn) = 0.
(2.6)

We shall prove that gλ = λ. Since g is continuous, we verify

lim
n→∞

d (yn+1, yn+1, gλ) = lim
n→∞

d (gyn, gyn, gλ) = 0,(2.7)

and

lim
n→∞

d (gλ, yn+1, yn+1) = lim
n→∞

d (gλ, gyn, gyn) = 0,

that is, limn→∞ yn+1 = gλ, by the uniqueness of limit, we conclude that gλ = λ,

that is, λ is a fixed point of g. �

At present, we define a new condition.

(H) If {yn} is a sequence in Y , such that β (yn, yn+1, yn+2) ≥ 1 for any n and

yn → y ∈ Y , until n → ∞, then there exists a subsequence {yn(k)} of {yn}
such that β

(
yn(k), y, y

)
≥ 1 for all k.

Theorem 2.15. Let (Y, d) be a tripled complete quasi-metric space and g : Y → Y

be an β-implicit contractive mapping. Let that

(i) g is β-admissible;
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(ii) there exists x0 ∈ Y such that β
(
x0, gx0, g

2x0
)
≥ 1 and β

(
g2x0, gx0, x0

)
≥ 1;

(iii) (H) is verified.

Thus there exists a, µ ∈ Y such that gµ = µ.

Proof. From the proof of Theorem 2.14, we hnow that the sequence {yn} defined by

yn+1 = gyn for all n ≥ 0 is Cauchy and converges to some µ ∈ Y . From condition

(iii), there exists a subsequence {yn(k)} of {yn} such that β
(
yn(k), µ, µ

)
≥ 1 for all

k. We must show that gµ = µ. By (1.2), we have

F
(
β
(
yn(k)−1, µ, µ

)
d
(
yn(k)−1, gµ, gµ

)
, d

(
yn(k)−1, µ, µ

)
,

d
(
yn(k)−1, gyn(k)−1, g

2yn(k)−1

)
, d

(
µ, gµ, g2µ

)
, d

(
yn(k)−1, gyn(k)−1, µ

)
,

d
(
µ, gyn(k)−1, µ

)
, d (µ, gµ, µ)

)
≤ 0.

Using (ϕ1) and β
(
yn(k)−1, µ, µ

)
≥ 1, we get

ϕ
(
d
(
yn(k)−1, gµ, gµ

)
, d

(
yn(k)−1, µ, µ

)
, d

(
yn(k)−1, yn(k), yn(k)+1

)
,

d
(
µ, gµ, g2µ

)
, d

(
µ, gµ, g2µ

)
,

d
(
yn(k)−1, yn(k), µ

)
, d

(
µ, yn(k), µ

)
, d (µ, gµ, µ)

)
≤ 0.

Letting k → ∞ and by continuing of ϕ, we have

ϕ
(
d (µ, gµ, gµ), d (µ, µ, µ) , d (µ, µ, µ) ,

d
(
µ, gµ, g2µ

)
, d

(
µ, gµ, g2µ

)
,

d (µ, µ, µ) , d (µ, µ, µ) , d (µ, gµ, µ)
)
≤ 0,

and ϕ(t1, 0, 0, t2, t2, 0, 0, t3) ≤ 0. By (ϕ2), t1 ≤ 0, that is d (µ, gµ, gµ) ≤ 0, which

implies d (µ, gµ, gµ) = 0, that is, µ = gµ. �

For the uniqueness, we need additional condition.

(U) For all x, y, z ∈ Fix(g), we have β(x, y, z) ≥ 1 where Fix(g) denotes the set

of fixed points of g.

Theorem 2.16. Adding condition (U) to the hypothesis of Theorem 2.14 (resp.,

Theorem 2.15), we obtain that µ is the unique fixed point of g.

Proof. We obtain by contradiction, that is, there exist u, v, w ∈ Y such that u = gu,

v = gv and w = gu with u ̸= v, v ̸= w and u ̸= w. By (1.2) we get
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ϕ
(
β (u, v, w) d (gu, gv, gw), d (u, v, w) , d (u, u, u) ,

d (v, v, v) , d (w,w,w) , d (u, u, w) ,

d (v, u, v) , d (w, v, w)
)
≤ 0,

and

ϕ
(
β (u, v, w) d (u, v, w), d (u, v, w) , 0, 0, 0,

d (u, u, w) , d (v, u, v) , d (w, v, w)
)
≤ 0.

Due to the fact that β (u, v, w) ≥ 1, so by (Φ1), we argue

ϕ
(
d (u, v, w), d (u, v, w) , 0, 0, 0, d (u, u, w) , d (v, w, v) , d (w, v, w)

)
≤ 0.

Since ϕ satisfies property (Φ3), so there exists h2 ∈ Ψ, such that

d (u, v, w) ≤ h2 (d (w, v, w))

≤ h22 (d (w, v, w))

≤ · · ·

≤ hn2 (d (w, v, w)) .

(2.8)

Since
∑∞

n=1 h
n
2 (t) <∞, for each t ∈ R+, then as n→ ∞, we have

lim
n→∞

hn2 (d(u, v, w)) = 0.

Thus d (w, v, w) ≤ 0, implies that d (w, v, w) = 0, that is, u = v = w a contradiction.

�

In the sequel we present the following corollaries consequences of Theorem 2.14 (resp.

Theorem 2.15).

Corollary 2.17. Let (Y, d) be a complete tripled quasi-metric space and g : Y → Y

be such that

β (x, y, z) d (gx, gy, gz) ≤ a1d (x, y, z) + a2d
(
x, gx, g2x

)
+ a3d

(
y, gy, g2y

)
+ a4d

(
z, gz, g2z

)
+ a5d (x, gx, z) + a6d (y, gx, y)

+ a7d (z, gy, z) ,

for all x, y, z ∈ Y , where ai ≥ 0 for i = 1, 2, . . . , 7 and
∑7

i=1 ai < 1. Let that

(i) g is β-admissible;

(ii) there exists y0 ∈ Y such that β
(
y0, gy0, g

2y0
)
≥ 1 and β

(
g2y0, gy0, y0

)
≥ 1;

(iii) g is continuous or (H) is verified.

Then there exists λ ∈ Y such that gλ = λ.
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Proof. It suffices to put ϕ in Theorem 2.14 (resp. Theorem 2.15) as given in Example

2.12. �

Corollary 2.18. Let (Y, d) be a tripled complete quasi-metric space and g : Y → Y

be such that

β (x, y, z) d (gx, gy, gz) ≤ kmax

{
d (x, y, z) ,

(
x, gx, g2x

)
, d

(
y, gy, g2y

)
,

d
(
z, gz, g2z

)
, d (x, gx, z) , d (y, gx, y) , d (z, gy, z)

}
,

for any x, y, z ∈ Y , where k ∈ [0, 1). Let that

(i) g is β-admissible;

(ii) there exists x0 ∈ Y such that β
(
x0, gx0, g

2x0
)
≥ 1 and β

(
g2x0, gx0, x0

)
≥ 1;

(iii) g is continuous or (H) is verified.

Then there exists a λ ∈ Y , such that gλ = λ.

Proof. It suffices to take ϕ in Theorem 2.14 (resp. Theorem 2.15) as given in Example

2.12, that is ϕ(t1, t2, · · · , t8) = t1 − kmax{t2, . . . , t8} where k ∈ [0, 1). �

Corollary 2.19. Let (Y, d) be a complete tripled quasi-metric space and g : (Y, d) →
(Y, d) be a given mapping. Let that

ϕ
(
d (gx, gy, gz) ≤ d (x, y, z) ,

(
x, gx, g2x

)
, d

(
y, gy, g2y

)
,

d
(
z, gz, g2z

)
, d (x, gx, z) , d (y, gx, y) , d (z, gy, z)

)
≤ 0,

for all x, y, z ∈ Y , where ϕ ∈ Γ. Then g has a unique fixed point.

Proof. It is enough to take β(x, y, z) = 1 for all x, y, z ∈ Y in Theorem 2.15. Notice

that the hypotheses (U) is satisfied, so we use Theorem 2.14. �

Corollary 2.20. Let (Y, d) be a complete tripled quasi-metric space and g : (Y, d) →
(Y, d) be a given mapping such that

d (gx, gy, gz) ≤ kmax
{
d (x, y, z) ,

(
x, gx, g2x

)
, d

(
y, gy, g2y

)
,

d
(
z, gz, g2z

)
, d (x, gx, z) , d (y, gx, y) , d (z, gy, z)

}
≤ 0,

for all x, y, z ∈ X, where k ∈ [0, 1). Then g has a unique fixed point.

Proof. It suffices to take ϕ as given in Example 2.12. Then we apply Corollary

2.17. �

Now we show the following example establishing Corollary 2.18.
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Example 2.21. Let Y = [0,∞) endowed with the ripled quasi-metric d(x, y, z) =

|x| + |y|, if x ̸= y, y ̸= z and x ̸= z, also d(x, y, z) = 0 whenever x = y = z. It

is obvious that (Y, d) is a complete tripled quasi-metric space. Let the mapping

S : Y → Y defined by

Sx =

{
x2 − 5x+ 6, x > 2,
x

3
, x ∈ [0, 2].

At first we observe that the Banach contraction principle for d0(x, y, z) = |x− y|+
|x− z|+ |y − z| can not be used in this case because we have

d0(S0, S4, S8) = d0(0, 2, 30) = 60 > d0(0, 4, 8) = 16.

We define the mapping β : Y × Y × Y → [0,∞) by β(x, y, z) = 1, if x, y, z ∈ [0, 1],

otherwise β(x, y, z) = 0. If x, y, z ∈ [0, 1] and x ̸= y, y ̸= z and z ̸= z, we have

β(x, y, z)d(Sx, Sy, Sz) = d(Sx, Sy, Sz)

≤ |Sx|+ |Sy|

=
x

3
+
y

3

=
1

3
d(x, y, z)

≤ kmax
{
d(x, y, z), d(x, Sx, S2x), d(y, Sy, S2y),

d(z, Sz, S2z), d(x, Sx, z), d(y, Sx, y), d(z, Sy, z)
}
,

where k = 1
3 . Now, we shall prove that the hypotheses (H) is satisfied. Let {xn}

be a sequence in Y , such that β (xn, xn+1, xn+2) ≥ 1 for all n and xn → x ∈ Y

as n → ∞. Then by definition of β, we get (xn, xn+1, xn+2) ∈ [0, 1] × [0, 1] × [0, 1]

for any n. Let that x > 1, then xn ̸= x for any n. Since xn → x ∈ Y , so

d(x, x, xn) = 2|x| → 0, which is a contradiction. Thus x ∈ [0, 1]. We obtain that

(xn, x, x) ∈ [0, 1]× [0, 1]× [0, 1] for all n, that is β(xn, x, x) = 1, (H) is verified. Put

x0 = 1, we have β(x0, Sx0, S
2x0) = β(1, 13 ,

1
9) and β(S

2x0, Sx0, x0) = β(19 ,
1
3 , 1) = 1.

The mapping T is β-admissible. Let x, y, z ∈ Y such that β(x, y, z) ≥ 1, so x, y, z ∈
[0, 1]. Then

β(Sx, Sy, Sz) = β
(x
3
,
y

3
,
z

3

)
= 1.

All hypotheses of Corollary 2.18 hold and the mapping S has a fixed point in Y .

Note that in this case, we obtain two fixed points of S, that are λ = 0 and λ = 3+
√
3.
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Definition 2.22. Let (Y,≼) be a partially ordered set and g : Y → Y be a given

mapping. We say that f is nondecreasing with respect to ≼ if x ≼ y then gx ≼ gy

for all x, y,∈ Y .

Definition 2.23. Let (Y,≼) be a partially ordered set. A sequence {xn} ⊂ Y is

said to be nondecreasing with respect to ≼, if xn ≼ xn+1 for all n.

Definition 2.24. Let (Y,≼) be a partially ordered set and d be a tripled quasi-

metric on Y . We say that (Y,≼, d) is regular if for every nondecreasing sequence

{xn} ⊂ Y such that xn → x ∈ Y as n → ∞, there exists a subsequences {xn(k)} of

{xn} such that xn(k) ≼ x for all k.

We state the following result.

Theorem 2.25. Let (Y,≼) be a partially ordered set and d be a tripled quasi-metric

on Y , such that (Y, d) is complete. Let g : Y → Y be a nondecreasing mapping with

respect to ≼. Let that there exists a function ϕ ∈ Γ such that

ϕ
(
d (gx, gy, gz), d (x, y, z) , d

(
x, gx, g2x

)
, d

(
y, gy, g2y

)
, d

(
z, gz, g2z

)
,

d (x, gx, z) , d (y, gx, y) , d (z, gy, z)
)
≤ 0,

for all x, y, z ∈ Y with x ≽ y ≽ z or x ≼ y ≼ z. Let that the following conditions

hold.

(i) There exists x0 ∈ Y such that x0 ≼ gx0 ≼ g2x0 or g2x0 ≼ gx0 ≼ x0;

(ii) g is continuous or (Y,≼, d) is regular.

Then g has a fixed point. Moreover, if Fix(g) is well-ordered, we have uniqueness

of the fixed point.

Proof. Define the mapping β : Y × Y × Y → [0,∞) by β(x, y, z) = 1, if x ≼ y ≼ z

or z ≼ y ≼ x, otherwise β(x, y, z) = 0. Obviously, g is an β-implicit contractive

mapping, that is

ϕ
(
β(x, y, z)d (gx, gy, gz), d (x, y, z) , d

(
x, gx, g2x

)
, d

(
y, gy, g2y

)
, d

(
z, gz, g2z

)
,

d (x, gx, z) , d (y, gx, y) , d (z, gy, z)
)
≤ 0.

From condition (i) we have β
(
x0, gx0, g

2x0
)
≥ 1 or β

(
g2x0, gx0, x0

)
≥ 1. Moreover,

for all x, y, z ∈ Y , from the monotone property of g, we have β(x, y, z) ≥ 1, then

x ≽ y ≽ z or x ≼ y ≼ z, so gx ≽ gy ≽ gz or gx ≼ gy ≼ gz, hence β(gx, gy, gz) ≥ 1.

Thus g is β-admissible. Now, if g is continuous the existence of a fixed point follows

from Theorem 2.14. Consider now that (Y,≼, d) is regular. Let {xn} be a sequence



EXISTENCE OF A SOLUTION OF THE INTEGRAL EQUATIONS 229

in Y such that (xn, xn+1, xn+2) ≥ 1 for any n and xn → x ∈ Y as n→ ∞. From the

regularity hypotheses, there exists a subsequence {xn(k)} of {xn} such that xn(k) ≼ x

for all k. This implies from the definition of β that β(xn(k), x, x) ≥ 1 for all k. In

this case, the existence of a fixed point follows from Theorem 2.15. To show the

uniqueness. Let x, y ∈ Y , (x ≼ y or y ≼ x). By hypotheses, there exists z ∈ Y such

that x ≼ y ≼ z or z ≼ y ≼ x, which implies β(x, y, z) ≥ 1 or β(z, y, x) ≥ 1. This, we

deduce the uniqueness of the fixed point by Theorem 2.16. �

3. Application

Now, we provide an application on the research of a solution of an integral equa-

tion. For instance by Corollary 2.20 , we will prove the existence of a solution of the

following integral equation, where E : [0, 1]× R → [0,∞) is a continuous function

x(t) =

∫ 1

0
G(s, t)E(s, x(s)) ds,

y(t) =

∫ 1

0
G(s, t)E(s, y(s)) ds,

z(t) =

∫ 1

0
G(s, t)E(s, z(s)) ds.

(3.1)

Let Y = C ([0, 1], [0,∞)) be the set of nonnegative continuous functions defined on

[0, 1], Take the tripled quasi-metric d : Y × Y × Y → [0,∞) defined by d(x, y, z) =

∥x∥∞ + ∥y∥∞, if x ̸= y, x ̸= z and y ̸= z, d(x, y, z) = 0 whenever x = y = z,

where ∥x∥∞ = supt∈[0,1] x(t). It is easy to show that (Y, d) is a complete tripled

quasi-metric. Now, we define the mapping S : Y → Y as follows

Sx(t) =

∫ 1

0
G(s, t)E(s, x(s)) ds.

Theorem 3.1. Let the following condition hold. Assume that there exist µ1, µ2, µ3 ∈
[0, 1) such that µ1+µ2+µ3 < 1 and for any s ∈ [0, 1] and x, y, z ∈ Y , (x ̸= y, x ̸= z

and y ̸= z), we have E(s, x(s)) ≤ µ1∥x∥∞, E(s, y(s)) ≤ µ2∥y∥∞, and E(s, z(s)) ≤
µ3∥z∥∞, where ∫ 1

0
G(s, t)E(s, x(s)) ds ̸=

∫ 1

0
G(s, t)E(s, y(s)) ds,∫ 1

0
G(s, t)E(s, x(s)) ds ̸=

∫ 1

0
G(s, t)E(s, z(s)) ds,
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∫ 1

0
G(s, t)E(s, y(s)) ds ̸=

∫ 1

0
G(s, t)E(s, z(s)) ds.

Then the integral equation (3.1) has a unique solution x ∈ C ([0, 1], [0,∞)).

Proof. For all x, y, z ∈ Y , (x ̸= y, x ̸= z and y ̸= z), we have

∥Sx∥∞ = sup
t∈[0,1]

∫ 1

0
G(s, t)E(s, x(s)) ds ≤ 1

8
µ1∥x∥∞,

∥Sy∥∞ = sup
t∈[0,1]

∫ 1

0
G(s, t)E(s, y(s)) ds ≤ 1

8
µ2∥y∥∞,

∥Sz∥∞ = sup
t∈[0,1]

∫ 1

0
G(s, t)E(s, z(s)) ds ≤ 1

8
µ3∥z∥∞.

It follows that for all x, y, z ∈ Y , (x ̸= y, x ̸= z and y ̸= z), we obtain

d(Sx, Sy, Sz) = ∥Sx∥∞ + ∥Sy∥∞

≤ 1

8
µ1∥x∥∞ +

1

8
µ2∥y∥∞

≤ 1

8
(∥x∥∞ + ∥y∥∞)

=
1

8
d(x, y, z).

Therefore,

d(Sx, Sy, Sz) ≤ 1

8
max

{
d(x, y, z), d(x, Sx, S2x), d(y, Sy, S2y), d(z, Sz, S2z),

d(x, Sx, z), d(y, Sx, y), d(z, Sy, z)} .
(3.2)

On the other hand, obviously (3.2) holds. Therefore all condition of Corollary 2.20

are satisfied and so S has a unique fixed point. �
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