
International Journal of Internet, Broadcasting and Communication Vol.16 No.2 193-202 (2024)

http://dx.doi.org/10.7236/IJIBC.2024.16.2.193

Copyright© 2024 by The Institute of Internet, Broadcasting and Communication. This is an Open Access article distributed under the terms

of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0)

A Fabricator Design for Metadata CI/CD in Data Fabric

Chae-Yean Yun*, Seok-Jae Moon**

* The master’s course, Graduate School of Smart Convergence, KwangWoon University, Seoul,

Korea

** Professor, Graduate School of Smart Convergence, KwangWoon University, Seoul, Korea

E-mail : {dbscodus, msj8086}@kw.ac.kr

Abstract

As companies specialize, they use more modern applications, but they still rely on legacy systems and data

access is limited by data silos. In this paper, we propose the Fabricator system, a design system for metadata

based on Data Fabric that plays a key role in the data orchestration layer consisting of three layers: Sources

Engine, Workload Builder, and Data Fabric Ingestion, thereby achieving meaningful integration of data and

information. Provides useful insights to users through conversion. This allows businesses to efficiently access

and utilize data, overcoming the limitations of legacy systems.

Keywords: Apache, BigData, Cloud, Database, Data Fabric, Data Integration, Metadata

1. INTRODUCTION

Data Fabric architecture is an integrated framework for managing big data and data across various stages

[1]. Data Fabric architecture effectively utilizes the latest technologies such as big data analysis and cloud

computing for large enterprises [2]. The existing Data Fabric architecture consists of five core layers [3]. First,

the Data Collection layer where data is loaded into the BigData store. Second, the Data Management and

Intelligence layer, where data is governed, protected, managed and accessed and other related processes take

place. Third, the Data Orchestration layer where data is integrated and converted into meaningful information

that users can use. The fourth is the Data Discovery layer, which is the available data that users can view.

Lastly, there is the Data Access layer, which is the interface through which users can access and obtain data to

gain business insights. As companies expand to become more specialized, they utilize an increasing number

of cutting-edge system supports meaningful integration of data and conversion into information, providing

useful insights to users. Therefore, companies can quickly access and utilize data effectively, overcoming

limitations caused by legacy systems. The structure of this paper is as follows. Section 2 describes related

research, and Section 3 describes the Fabricator design system and Fabricator model configuration for Data

Fabric metadata Continuous Integration/Continuous Deployment (CI/CD). Section 4 describes application

cases of the system and comparative analysis with other systems, and finally, Section 5 describes conclusions

and future research. applications. However, storage systems still rely on legacy systems, and data silos make

IJIBC 24-2-23

Manuscript Received: April. 5, 2024 / Revised: April. 18, 2024 / Accepted: April. 24, 2024

Corresponding Author: msj8086@kw.ac.kr

Tel: +82-2-940-8283, Fax: +82-2-940-5443

Author’s affiliation: Professor, Graduate School of Smart Convergence, KwangWoon University, Seoul, Korea

194 International Journal of Internet, Broadcasting and Communication Vol.16 No.2 193-202 (2024)

approaches to data access stagnant and difficult over time. As a result, problems arise in terms of low

productivity, efficiency, data accessibility, reliability of storage and security, and scalability [4, 5].

In this paper, we propose a design system for Data Fabric metadata, which plays a key role in the Data

Orchestration layer. The proposed system consists of three layers: Sources Engine, Workload Builder, and

Data Fabric Ingestion. This allows businesses to efficiently access and utilize data, overcoming the limitations

of legacy systems.

2. PROPOSED SYSTEM

 In this paper, we propose a Fabricator design system for metadata CI/CD of a new Data Fabric. The

Fabricator Design System consists of a total of three layers.

Figure 1. Fabricator Architecture

The first layer, the Sources Engine layer, includes databases such as Hive, HBase, Apache Spark, and

Google Big Query, which are used as the starting point for data processing.

• Hive: It is a Data Warehouse that stores and manages large-scale data.

• HBase: It is a distributed NoSQL database that stores large amounts of unstructured data.

• Apache Spark: It is an open source distributed computing framework for big data processing.

A Fabricator Design for Metadata CI/CD in Data Fabric 195

• Google Big Query: This is a Data Warehouse service provided by Google Cloud.

The second layer, the Workload Builder layer, is responsible for organizing and managing data processing

tasks, and is the step to define and execute data processing tasks.

The third layer, the Data Fabric Ingestion layer, represents detailed processes including the Fabricator

Module.

• Fabricator Module: This is an important step to process the data and transfer it to the metadata repository.

This includes the process of extracting, converting, and loading data.

• Metadata Repository: Refers to a metadata repository where data is stored after data processing. This

repository stores information related to processed data. Metadata includes information that describes the

characteristics, structure, and relationships of data.

2.1. System Component

(A) Inserting (B) Updating

Figure 2. Inserting& Updating metadata schema identification information (MSII) repository
propagation using Fabricator.

Figure 2-A visually illustrates the process of inserting metadata schema identification information (MSII)

into the Fabricator data repository and shows how each step is connected.

196 International Journal of Internet, Broadcasting and Communication Vol.16 No.2 193-202 (2024)

• fabricator_data/researcher: This is the grid located at the top, and the “MSII” classification is added

starting from this grid. “MSII” represents metadata schema identification information.

• create external: It is connected to the “fabricator_data/researcher” grid. It is responsible for creating the

“MSII” classification externally.

• researchers: It is connected to the “create external” gear. This grid has a “MSII” classification.

• create view legacy_researchers: In the “researchers” grid, it is connected to the two gears “legacy 1” and

“legacy 2”, each with the “MSII” classification, to create the “legacy_researchers” view. Views created

through the ”create view” operation aggregate all “MSII”.

• legacy_researchers: Therefore, the “legacy_researchers” view integrates and manages all metadata

schema identification information generated throughout the system. The “legacy_researchers” view created in

this way plays an important role in the data processing and management process. This view allows you to

efficiently manage and utilize metadata schema information.

Figure 2-B visually shows the process by which metadata schema identification information (MSII) is

updated through Fabricator and shows how each step is connected.

• fabricator_data/researcher: It is the grid located at the top, and this grid is “the data source where MSII

first occurs. It can be understood as a database or repository where data related to researchers is stored.

• update external: Connected to the “fabricator_data/researcher” grid, this step is responsible for updating

the “MSII” classification through an external update mechanism. This is the stage where update information

generated from outside is received and processed.

• researchers: It is connected to the “update external” gear. This grid reflects the updated “MSII”

classification. It can be understood as a central location where the latest research data is stored.

• update view legacy_researchers: It is connected to the “researchers” grid. It is responsible for updating

the view called “legacy_researchers”. In database terms, a view is a virtual table based on the result set of a

SQL statement that can combine and filter data from “legacy 1” and “legacy 2” databases to provide a unified

view of legacy researcher data.

• legacy_researchers: The final result, with all updates completed, includes an updated “MSII”

classification and can provide refined information by integrating information from current researchers and

legacy databases.

Algorithm 1 below is an algorithm that defines the process for managing MSII, and is intended to automate

the process of creating or updating legacy views in the database based on given metadata and external

information.

A Fabricator Design for Metadata CI/CD in Data Fabric 197

Algorithm 1. MSII - Metadata schema identification information

procedure start:

 fabricator_path: str fabpath; // metadata path

 msii_classifcaiton: str msiiclass; // metadata schema identification classification

 create_external: str external; // external create path

 leacy_viewcreate: str viewcreate; // creating legacy views

func_msiiPropated(external): // metadata schema identification information propagted

 result = “create view leacy_n(external.researchers) as

select leacy_n(external.researchers) as researchers _name, d.name as department_name

 from employees e

 join departments d on e.department_id = d.id”;

 return result;

func_msiiUpdated(external): // metadata schema identification information updated

 result = “create view leacy_n(external.researchers) as

update leacy_n(external.researchers) as researchers _name, d.name as

department_name from employees e

 set employsees = external.researchers d

where on e.department_id = d.id”;

return result;

begin:

 str fabpath := input(os_path);

 str msiiclass:= input(add_metadata);

 external := fabpath, msiiclass

 if mclass == ‘add_metadata’: // creating legacy views type(add, update)

 str viewcreate := msiiPropagted(external)

 else if mclass == ‘update_metadata’:

 str viewcreate := msiiUpdated(external)

 end if;

 Integrated management of metadata schema identification information()

end:

procedure end;

2.2. Sequence Diagram

This sequence diagram represents the workflow from the Sources Engine layer to the Data Fabric Ingestion

layer.

Figure 3. Sequence Diagram of Proposed System

198 International Journal of Internet, Broadcasting and Communication Vol.16 No.2 193-202 (2024)

1. request(): This is the step to start the work. It is called from the Sources Engine layer and initializes the

work. Request metadata from a database or retrieve data from an external system.

2. buildPredModel(): It is called from the Workload Builder layer and plays a role in building a prediction

model. Create a model that predicts specific patterns or trends through data analysis.

3. setWorkloadProcess(): This is the step to set up the work process and is called from the Workload Builder

layer. Set or initialize parameters required for work.

4. returnWorkloadProcessInfo(): This is the step of returning the set work process information to the

Sources Engine layer. Returns the status and configuration information of the work process.

5. createWorkload(): It is called from the Sources Engine layer and is responsible for creating the workload.

Data is processed to create a workload.

6. sendWorkloadProcess(): This is the step to transmit workload process information back to the Workload

Builder layer.

7. transMetadataCordinator(): It is called from the Data Fabric Ingestion layer and proceeds with the

metadata schema registration process. Reconcile and verify metadata.

8. chkTransMetedata(): This is a step to check the consistency and consistency of metadata transmitted

from the Data Fabric Ingestion layer, and confirms the integrity of the data.

• Check that the transmitted metadata is in the correct format.

• Check whether there is duplicate data.

• Check that all required fields are filled in.

9. reqMetadataSchema(): This is the step of requesting the metadata schema, The field structure of the

metadata is checked.

• Retrieves schema information necessary to provide structured data representation.

• If necessary, use schema information to process or verify data.

10. confirmNewUpdate(): Called when newly updated information is confirmed, and all modifications are

tracked and validated.

• Check whether new updates are reflected accurately.

• Ensures consistency and accuracy of data.

11. saveMetadataInfo(): All metadata-related information is safely stored and data integrity and availability

are guaranteed.

A Fabricator Design for Metadata CI/CD in Data Fabric 199

• Store metadata information safely in the database.

• Maintain the integrity of data and make it searchable when necessary.

12. returnMetadataSchema(): This is the step of returning the stored metadata schema information and

confirms the field structure of the metadata. It is also delivered to the Sources Engine layer as the final result.

• Returns the schema of the saved metadata.

• If necessary, process or verify data using structured data representation.

13. makeWorkloadProcess(): Work processes can be recreated or updated, and new updates can be reflected

according to the latest information in stored metadata information.

• Update the work process based on information in stored metadata.

• If necessary, adjust work processes to reflect new updates.

14. return(): The entire process ends and control returns, at which point the workflow is complete.

• Notifies that the work process has ended normally.

• Returns the final result and indicates that the workflow is complete.

3. COMPARATIVE ANALYSIS

Table 1 compares the Proposed System with Data Warehouse, Data Lake, which are important concepts for

data management and analysis, based on Data Integration method, Data Processing process, Data Structure,

Data Access method, Scalability, and Application Field.

Table 1. Comparison of Systems

 Data Warehouse[6] Data Lake[7] Proposed System

Data Integration
Collect and integrate
structured data from

various sources

Store and integrate
unstructured data in raw

form

Integrate data in real
time from data sources

in various formats

Data Processing
Data processing through

ETL process
Process stored data

directly

Real-time processing
without movement or

transformation

Data Access

Unsuitable for real-time
analytics as data must
be processed before it
becomes available for
complex queries and

reports

Optimized for
processing large
amounts of data,

providing fast
processing speed

Provides data across
your organization's IT

infrastructure

200 International Journal of Internet, Broadcasting and Communication Vol.16 No.2 193-202 (2024)

Expandability
Requires upfront design

and ongoing
maintenance

Capable of storing and
processing large
amounts of data

Capable of integrating
large amounts of

complex and diverse
data

Application Field
Integration of historical

data for in-depth
analysis and reporting

Optimized field for big
data processing

Provides real-time
insights,

Big data workload
processing field

The first comparison item is data integration. Data Warehouse collects and integrates only structured data,

which is structured data extracted from relational databases, and Data Lake stores and integrates unstructured

data such as text, images, and video in raw form, but the proposed system integrates data in real time from data

sources in various formats such as SQL and CSV. Through this, companies can maximize the flexibility and

usability of data.

The second comparison item is data processing. Data Warehouse processes data through an ETL (Extract,

Transform, Load) process, and Data Lake uses a method of directly processing stored data, but the proposed

system processes data in real time without separate movement or transformation.

The third comparison item is data access. Data Warehouse is not suitable for real-time analysis because

data must be processed before it becomes available for complex queries or reports, while Data Lake is

optimized for processing large amounts of big data and provides fast processing speed, and the proposed

system provides data across an organization's IT infrastructure and is also suitable for real-time analysis.

The fourth comparison item is scalability. Data Warehouse requires advance design and ongoing

maintenance, and Data Lake can store and process large amounts of data, but the proposed system can integrate

large amounts of complex and diverse data.

The last comparison item is the field of application. Data Warehouse is used for in-depth analysis and

reporting and is mainly applied in the field of historical data integration, Data Lake is optimized in the field of

big data processing, and the proposed system is applicable to providing real-time insights and processing big

data workloads. In summary, these are various tools for data management and analysis, each with their own

characteristics and advantages. Data Warehouse focuses on structured data, Data Lake focuses on unstructured

data, and Proposed System integrates various data sources to provide flexible data management.

Figure 4 is a graph comparing Data Warehouse, Data Lake, and Proposed System by performance. The

resource specifications in Table 2 apply. The performance evaluation in this paper was tested in a virtual

environment under the same conditions with data sizes of 20, 40, 60, 80, and 100 GB.

Table 2. Resource Specification

Item Details

Processor
Intel® Xeon® CPU E5-2697 v3 @ 2.60GHz – 8
Virtual CPUs (4 sockets with 2 cores per socket)

Memory 32 GB

A Fabricator Design for Metadata CI/CD in Data Fabric 201

Storage 512 GB HDD

Network 1 Gbit/s network card

OS Ubuntu 16.04 xenial

Figure 4. Comparative evaluation by performance

As shown in the Query response time graph, the query response time of the Data Warehouse increases as

the data size increases to approximately 3.11, 5.25, 7.05, 9.01, and 11.07 MB/s, and the data loading speed per

unit of speed is approximately 41.23, 51.34, and 60.34 MB/s, and data movement and conversion times

increased by 100.54, 90.34, 80.34, and 70.94 MB/h, but in particular, the time for 100GB data increased

significantly to 90.34 MB/h. On the other hand, the query response times for Data Lake increased as the data

size increased, measuring approximately 5.23, 8.01, 10.02, 12.29, and 15.54 MB/s. Additionally, the data

loading speed per unit decreased as the size increased, measuring approximately 85.23, 70.78, 60.12, 50.25,

and 47.23 MB/s. The time taken for data movement and transformation increased with the data size, measuring

approximately 2.3, 4.43, 6.56, and 8.67 MB/h, However, beyond 100GB of data, it sharply increased to 20.23

MB/h. The query response times for our proposed system are approximately 4.31, 7.54, 9.34, 11.89, and 14.23

MB/s, while the data read/write speeds decreased as the data size increased, measuring approximately 95.98,

82.67, 70.89, 60.67, and 51.34 MB/s. However, the time taken for data movement and transformation increased

with the data size, measuring approximately 1.02, 2.25, 3.34, 4.91, and 5.45 MB/h. Interestingly, there wasn't

a significant increase beyond 100GB compared to other systems. As a result, as data size increases, query

response time and data read/write speed tend to decrease across all data technologies. Data warehouses have

relatively high query response times and data read/write speeds, but do not provide data movement and

transformation times. Data lakes tend to have very long data movement and conversion times, and Data Fabric

shows a tendency for query response times and data movement and conversion times to increase, but data read

and write speeds are relatively stable.

4. CONCLISION

In this paper, we propose a design system for metadata of Data Fabric, which plays a key role in the data

orchestration layer. DW is used for in-depth analysis and reporting based on structured data, and is mainly

used to integrate historical data. DL focuses on unstructured data and is optimized for processing large amounts

of data, so it provides fast processing speed and is suitable for big data processing. On the other hand, the

proposed Fabircator architecture can maximize data flexibility and usability by integrating various types of

data sources in real time. In addition, it can be applied to various big data workload processing fields by

202 International Journal of Internet, Broadcasting and Communication Vol.16 No.2 193-202 (2024)

providing real-time insight. Therefore, companies should be able to choose a data management and analysis

system that suits their own needs and goals. These choices have a significant impact on the success and growth

of an organization, and selecting an appropriate system can promote data-based decision-making and

innovation. As mentioned earlier, in Figure 2, Fabircator provides flexibility by integrating data in various

formats in real time. Future research requires technical improvements to provide faster processing speed and

real-time insights.

ACKNOWLEDGMENT

※ This paper was supported by the Kwangwoon University Research Grant of 2024.

REFERENCES

[1] X. Li, M. Yang, X. Xia, K. Zhang, and K. Liu, “A Distributed Data Fabric Architecture based on Metadate

Knowledge Graph,” 2022 5th International Conference on Data Science and Information Technology (DSIT).

IEEE, Jul. 22, 2022

DOI: https://doi.org/10.1109/DSIT55514.2022.9943831

[2] A. Abu Rumman and L. Al-Abbadi, “Structural equation modeling for impact of Data Fabric Framework on

business decision-making and risk management,” Cogent Business & Management, vol. 10, no. 2. Informa

UK Limited, May 21, 2023

DOI: https://doi.org/10.1080/23311975.2023.2215060

[3] N. G. Kuftinova, O. I. Maksimychev, M. Yu. Karelina, A. V. Ostroukh, and M. I. Ismoilov, “Data Fabric Digital

Array Processing in Road Transport Systems,” 2022 Intelligent Technologies and Electronic Devices in Vehicle

and Road Transport Complex (TIRVED). IEEE, Nov. 10, 2022.

DOI: https://doi.org/10.1109/TIRVED56496.2022.9965462

[4] A. Flizikowski, E. Alkhovik, M. Munjure Mowla, and M. Arifur Rahman, “Data Handling Mechanisms and

Collection Framework for 5G vRAN in Edge Networks,” 2022 IEEE Conference on Standards for

Communications and Networking (CSCN). IEEE, Nov. 28, 2022

DOI: https://doi.org/10.1109/CSCN57023.2022.10051118

[5] N. G. Kuftinova, O. I. Maksimychev, A. V. Ostroukh, A. V. Volosova, and E. N. Matukhina, “Data Fabric as an

Effective Method of Data Management in Traffic and Road Systems,” 2022 Systems of Signals Generating and

Processing in the Field of on Board Communications. IEEE, Mar. 15, 2022

DOI: https://doi.org/10.1109/IEEECONF53456.2022.9744402

[6] J. Praful Bharadiya, “A Comparative Study of Business Intelligence and Artificial Intelligence with Big Data

Analytics,” American Journal of Artificial Intelligence. Science Publishing Group, Jun. 27, 2023

DOI: https://doi.org/10.11648/j.ajai.20230701.14

[7] R. Hai, C. Koutras, C. Quix, and M. Jarke, “Data Lakes: A Survey of Functions and Systems,” IEEE Transactions

on Knowledge and Data Engineering. Institute of Electrical and Electronics Engineers (IEEE), pp. 1–20, 2023

DOI: https://doi.org/10.1109/TKDE.2023.3270101

https://doi.org/10.1109/DSIT55514.2022.9943831
https://doi.org/10.1080/23311975.2023.2215060
https://doi.org/10.1109/TIRVED56496.2022.9965462
https://doi.org/10.1109/CSCN57023.2022.10051118
https://doi.org/10.1109/IEEECONF53456.2022.9744402
https://doi.org/10.11648/j.ajai.20230701.14
https://doi.org/10.1109/TKDE.2023.3270101

