References
- S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vuckovic, and A.W. Rodriguez, "Inverse design in nanophotonics," Nature Photonics, 12(11), 659-670, 2018. DOI: https://doi.org/10.1038/s41566-018-0246-9
- A. Shrestha, and A. Mahmood, "Review of deep learning algorithms and architectures," IEEE Access, 7, 53040-53065, 2019. DOI: https://doi.org/10.1109/ACCESS.2019.2912200
- D. Liu, Y. Tan, E. Khoram, and Z. Yu, "Training deep neural networks for the inverse design of nanophotonic structures," ACS Photonics, 5(4), 1365-1369, 2018. DOI: https://doi.org/10.1021/acsphotonics.7b01377
- A. S. Khazaal, M. Springborg, C. Fan, K. Huwig, "Optimizing small conjugated molecules for solar-cell applications using an inverse-design method," Journal of Molecular Graphics and Modelling, 100, 107654, 2020. DOI: https://doi.org/10.1016/j.jmgm.2020.107654
- T. Zhang, J. Wang, Q. Liu, J. Zhou, J. Dai, X. Han, Y. Zhou, and K. Xu, "Efficient spectrum prediction and inverse design for plasmonic waveguide systems based on artificial neural networks," Photonics Research, 7(3) 368-380, 2019. DOI: https://doi.org/10.1364/PRJ.7.000368
- P. E. Gill, W. Murray, and M. A. Saunders, "SNOPT: An SQP algorithm for large-scale constrained optimization," SIAM review, 47(1), 99-131, 2005. DOI: https://doi.org/10.1137/S003614450444609
- R. Caruana, and A. Niculescu-Mizil, "An empirical comparison of supervised learning algorithms," In Proceedings of the 23rd international conference on Machine learning, 161-168, 2006. DOI : https://doi.org/10.1145/1143844.1143865
- J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, ... and M. Soljacic, "Nanophotonic particle simulation and inverse design using artificial neural networks," Science advances, 4(6), eaar4206, 2018. DOI: https://doi.org/10.1126/sciadv.aar4206
- S. Kim, M. Jwa, S. Lee, S. Park, and N. Kang, "Deep learning-based inverse design for engineering systems: multi disciplinary design optimization of automotive brakes," Structural and Multidisciplinary Optimization, 65(11), 323, 2022. DOI: https://doi.org/10.1007/s00158-022-03386-8
- Z. Liu, D. Zhu, S. P. Rodrigues, K. T. Lee, and W. Cai, "Generative model for the inverse design of metasurfaces," Nano letters, 18(10), 6570-6576, 2018. DOI: https://doi.org/10.1021/acs.nanolett.8b03171
- Y. Dan, Y. Zhao, X. Li, S. Li, M. Hu, and J. Hu, "Generative adversarial networks (GAN) based efficient sampling of chemical composition space for inverse design of inorganic materials," npj Computational Materials, 6(1), 1-7, 2020. DOI: https://doi.org/10.1038/s41524-020-00352-0
- A. Mall, A. Patil, A. Sethi, and A. Kumar, "A cyclical deep learning based framework for simultaneous inverse and forward design of nanophotonic metasurfaces," Scientific reports, 10(1), 19427, 2020.
- Y. Dong, D. Li, C. Zhang, C. Wu, H. Wang, M. Xin, J. Cheng, and J. Lin, "Inverse design of two-dimensional graphene/h-BN hybrids by a regressional and conditional GAN," Carbon, 169, 9-16, 2020. DOI: https://doi.org/10.1016/j.carbon.2020.07.013
- W. Ma, F. Cheng, Y. Xu, Q. Wen, and Y. Liu, "Probabilistic Representation and Inverse Design of Metamaterials Based on a Deep Generative Model with Semi-Supervised Learning Strategy," Advanced Materials, 31(35), 1901111, 2019. DOI: https://doi.org/10.1002/adma.201901111
- Y. Zhang, and W. Ye,"Deep Learning-based inverse method for layout design," Structural and Multidisciplinary Optimization, 60, 527-536, 2019. DOI: https://doi.org/10.1007/s00158-019-02222-w
- C. Wang, Y. Fu, K. Deng, and C. Ji, "Functional Response Conditional Variational Auto-Encoders for Inverse Design of Metamaterials," In NeurIPS 2021 Workshop on Deep Learning and Inverse Problems, 2021.
- W. Jing, LI. Runze, H. E. Cheng, C. Haixin, R. Cheng, Z. Chen, and M. Zhang, "An inverse design method for supercritical airfoil based on conditional generative models," Chinese Journal of Aeronautics, 35(3), 62-74, 2022. DOI: https://doi.org/10.1016/j.cja.2021.03.006
- I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, ... and Y. Bengio, "Generative adve rsarial nets," Advances in neural information processing systems, 27, 2014.
- D. P. Kingma, and M. Welling, "Auto-encoding variational bayes," arXiv preprint arXiv:1312.6114, 2013. DOI: https://doi.org/10.48550/arXiv.1312.6114
- M. Mirza, and S. Osindero, "Conditional generative adversarial nets," arXiv preprint arXiv:1411.1784, 2014. DOI: https://doi.org/10.48550/arXiv.1411.1784