DOI QR코드

DOI QR Code

Artificial intelligence approach for linking competences in nuclear field

  • Vincent Kuo (Department of Civil Engineering, Aalto University) ;
  • Gunther H. Filz (Department of Architecture, Aalto University) ;
  • Jussi Leveinen (Department of Civil Engineering, Aalto University)
  • Received : 2023.02.24
  • Accepted : 2023.10.04
  • Published : 2024.01.25

Abstract

Bridging traditional experts' disciplinary boundaries is important for nuclear knowledge management systems. However, expert competences are often described in unstructured texts and require substantial human effort to link related competences across disciplines. The purpose of this research is to develop and evaluate a natural language processing approach, based on Latent Semantic Analysis, to enable the automatic linking of related competences across different disciplines and communities of practice. With datasets of unstructured texts as input training data, our results show that the algorithm can readily identify nuclear domain-specific semantic links between words and concepts. We discuss how our results can be utilized to generate a quantitative network of links between competences across disciplines, thus acting as an enabler for identifying and bridging communities of practice, in nuclear and beyond.

Keywords

References

  1. O. Matselyukh, C. Chenel-ramos, M. Ceclan, Retaining Critical Competences in Nuclear Energy Sector: National Initiatives and Best Practices, Instruments and Tools, 2015.
  2. L. Edvinsson, M. Malone, Intellectual Capital, Harper Business, New York, New York, USA, 1997.
  3. E. Wenger, R. McDermott, W. Snyder, Cultivating Communities of Practice: A Guide to Managing Knowledge, Harvard Business School Press, 2002.
  4. L.A. Petrides, T.R. Nodine, Knowledge Management in Education: Defining the Landscape, 2003. Half Moon Bay.
  5. C. Bratianu, I. Orzea, Organizational knowledge creation, Manag. Mark. Challenges Knowl. Soc. 5 (2010) 41-62.
  6. G. Von Krogh, The communal resource and information systems, J. Strat. Inf. Syst. 11 (2002) 85-107. https://doi.org/10.1016/S0963-8687(02)00006-9
  7. S.L. Pan, D. Leidner, Bridging communities of practice with information technology in pursuit of global knowledge sharing, J. Strat. Inf. Syst. 12 (2003) 71-88. https://doi.org/10.1016/S0963-8687(02)00023-9
  8. G. Bell, F. Lai, D. Li, Firm orientation, community of practice, and Internet-enabled interfirm communication: evidence from Chinese firms, J. Strat. Inf. Syst. 21 (2012) 201-215. https://doi.org/10.1016/j.jsis.2012.07.002
  9. J. Kietzmann, K. Plangger, B. Eaton, K. Heilgenberg, L. Pitt, P. Berthon, Mobility at work, J. Strat. Inf. Syst. 22 (2013) 282-297. https://doi.org/10.1016/j.jsis.2013.03.003
  10. IAEA (International Atomic Energy Agency), Knowledge Management and its Implementation in Nuclear Organizations, IAEA Nucl. Energy Ser. No. NG-T-6.10, 2016.
  11. IAEA (International Atomic Energy Agency), Exploring Semantic Technologies and Their Application to Nuclear Knowledge Management, IAEA Nucl. Energy Ser. No. NG-T-6.15, 2021.
  12. S. Deerwester, S.T. Dumais, G.W. Furnas, T.K. Landauer, R. Harshman, Indexing by latent semantic analysis, J. Am. Soc. Inf. Sci. 41 (1990) 391-407. https://doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
  13. S.T. Dumais, Latent semantic analysis, Annu. Rev. Inf. Sci. Technol. 38 (2004) 188-230. https://doi.org/10.1002/aris.1440380105
  14. J. Han, M. Kamber, Data Mining: Concepts and Techniques, Morgan Kaufmann, Waltham, USA, 2006.
  15. S.T. Dumais, O.M. Way, LSA and information retrieval: getting back to basics, in: T. K. Landauer, D.S. McNamara, S. Dennis, W. Kintsch (Eds.), Handb. Latent Semant. Anal, Lawrence Erlbaum Associates, Mahwah, NJ, 2007.
  16. C. Manning, P. Raghavan, H. Schutze, Introduction to Information Retrieval, Cambridge University Press, New York, NY, 2008.
  17. M.A.F. Ragab, A. Arisha, Knowledge management and measurement: a critical review, J. Knowl. Manag. 17 (2013) 873-901. https://doi.org/10.1108/JKM-12-2012-0381
  18. K.M. Eisenhardt, M.E. Graebner, Theory building from cases: opportunities and challenges, Acad. Manag. J. 50 (2007) 25-32. https://doi.org/10.5465/amj.2007.24160888
  19. W.J. Creswell, D.J. Creswell, Research Design: Qualitative, Quantitative, and Mixed Methods Approach, SAGE Publications Ltd, 2018.
  20. European Commission, Petrus III. https://cordis.europa.eu/project/rcn/109649_en.html, 2015. (Accessed 25 April 2018).
  21. V. Kuo, Latent Semantic Analysis for Knowledge Management in Construction, Aalto University, 2019.
  22. T.K. Landauer, D.S. McNamara, S. Dennis, W. Kintsch, Handbook of Latent Semantic Analysis, 2007.
  23. S.S. Kulkarni, U.M. Apte, N.E. Evangelopoulos, The use of latent semantic analysis in operations management research, Decis. Sci. J. 45 (2014) 971-994. https://doi.org/10.1111/deci.12095
  24. A. Sidorova, N. Evangelopoulos, J.S. Valacich, T. Ramakrishnan, Uncovering the intellectual core of the information systems discipline, MIS Q. 32 (2008) 467. A20.
  25. N. Evangelopoulos, X. Zhang, V.R. Prybutok, Latent semantic analysis: five methodological recommendations, Eur. J. Inf. Syst. 21 (2012) 70-86. https://doi.org/10.1057/ejis.2010.61
  26. L. van der Maaten, G. Hinton, Visualizing Data using t-SNE, J. Mach. Learn. Res. 9 (2008) 2579-2605.
  27. M.F. Porter, An algorithm for suffix stripping, Progr. Electron. Libr. Inf. Syst. 14 (1980) 130-137. https://doi.org/10.1108/eb046814
  28. V. Kuo, Nuclear Engineering and Technology Journal Titles Dataset and LSA Outputs, Mendeley Data, vol. 1, 2023. https://data.mendeley.com/datasets/9j6std925r/1.
  29. S.A. Crossley, M. Dascalu, D.S. McNamara, How important is size? An investigation of corpus size and meaning in both latent semantic analysis and latent dirichlet allocation, in: Proc. Thirtieth Int. Florida Artif. Intell. Res. Soc. Conf., 2017, pp. 293-296.
  30. S. Sarkar, A. Dong, J. Gero, Learning symbolic formulations in design: syntax, semantics, and knowledge reification, Artif. Intell. Eng. Des. Anal. Manuf. 24 (2010) 63-85. https://doi.org/10.1017/S0890060409990175
  31. N. Evangelopoulos, Latent semantic analysis, Wiley Interdiscip. Rev. Cogn. Sci. 4 (2013) 683-692. https://doi.org/10.1002/wcs.1254
  32. A.M. Olney, Large-scale latent semantic analysis, Behav. Res. Methods 43 (2011) 414-423. https://doi.org/10.3758/s13428-010-0050-z
  33. R.B. Bradford, An empirical study of required dimensionality for large-scale latent semantic indexing applications, in: CIKM '08 Proc. 17th ACM Conf. Inf. Knowl. Manag., 2008, pp. 153-162.
  34. Y. Hong, H. Xie, G. Bhumbra, I. Brilakis, Comparing natural language processing methods to cluster construction schedules, J. Construct. Eng. Manag. 147 (2021).
  35. T. Cvitanic, B. Lee, H.I. Song, K. Fu, D. Rosen, LDA v. LSA: a comparison of two computational text analysis tools for the functional categorization of patents, in: Int. Conf. Case-Based Reason., 2016.