DOI QR코드

DOI QR Code

Measurements of proton beam flux and energy of APEP using foil activation technique

  • Wenlin Li (College of Physics and Technology, Guangxi Normal University) ;
  • Qifan Dong (Institute of High Energy Physics, Chinese Academy of Sciences) ;
  • Hantao Jing (Institute of High Energy Physics, Chinese Academy of Sciences) ;
  • Li Ou (College of Physics and Technology, Guangxi Normal University) ;
  • Zhixin Tan (Institute of High Energy Physics, Chinese Academy of Sciences) ;
  • Sixuan Zhuang (Institute of High Energy Physics, Chinese Academy of Sciences) ;
  • Qingbiao Wu (Institute of High Energy Physics, Chinese Academy of Sciences)
  • Received : 2023.05.12
  • Accepted : 2023.10.04
  • Published : 2024.01.25

Abstract

The activation method of metallic foils is an important technique to measure the flux and energy of proton beams. In this paper, the method was used to measure the CSNS APEP proton flux at seven nominal proton energies ranging from 10 MeV to 70 MeV for beam spot sizes of the 20 mm × 20 mm and 50 mm × 50 mm. The reactions of natTi(p, x)48V, natNi(p, x)57Ni, natCu(p, x)58Co, and 27Al(p, x)24Na were employed to measure the proton beam flux with a range of 107-109 p/cm2/s. Furthermore, we also proposed a method using the activity ratio with a stacked-foil target to determine the energy spread of a Gaussian-like distribution for different nominal proton energies. The optimal combinations of Al, Cu, Ti, Ni, Mo, Fe, Nb, and In foils were adopted for the proton energies. The measured energy spreads for degraded beams of 30 MeV-70 MeV were found to be smaller than 10.00%.

Keywords

References

  1. Marco Calviania, et al., Beam monitoring of high energy proton flux by the activation foil technique, Prog. Nuclear Sci. Technol. 4 (2014) 358-362.
  2. P. Strehl, et al., Beam Instrumentation and Diagnostics, Springer Berlin Heidelberg, 2006.
  3. Jonathan T. Morrell, et al., "Measurement of 139La (p,x) cross sections from 35-60 MeV by stacked-target activation.", Eur. Phys. J. A 56 (1) (2020) 1-13.
  4. F. Tarkanyi, et al., Activation cross-sections of long-lived products of protoninduced nuclear reactions on zinc, Appl. Radiat. Isot. 62 (1) (2005) 73-81.
  5. F. Ditroi, ' et al., Study of proton induced reactions on niobium targets up to 70 MeV, Nucl. Instrum. Methods Phys. Res. B 266 (24) (2008) 5087-5100.
  6. R. Michel, et al., Cross sections for the production of residual nuclides by low-and medium-energy protons from the target elements C, N, O, Mg, Al, Si, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Sr, Y, Zr, Nb, Ba and Au, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 129 (2) (1997) 153-193.
  7. Y.E. Titarenko, et al., Excitation Functions of Product Nuclei from 40-2600 MeV Proton-Irradiated 206, vol. 207, 2005, p. 208, natPb and 209Bi.
  8. S. Mills, et al., Experimental and theoretical excitation functions of radionuclides produced in proton bombardment of copper up to 200 MeV, Appl. Radiat. Isot. 43 (8) (1992) 1019-1030.
  9. Ferenc Tarkanyi, et al., Investigation of activation cross-sections of proton induced nuclear reactions on natMo up to 40 MeV: new data and evaluation, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 280 (2012) 45-73.
  10. Sandor Takacs, et al., Evaluation of proton induced reactions on 100Mo: new cross sections for production of 99mTc and 99Mo, J. Radioanal. Nucl. Chem. 257 (1) (2003) 195-201.
  11. Oranj, Leila Mokhtari, et al., 100-MeV proton beam intensity measurement by Au activation analysis using 197Au (p, pn) 196Au and 197Au (p, p3n) 194Au reactions, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 375 (2016) 26-31.
  12. Sandor Takacs, et al., "Investigation of the natMo (p, x) 96mgTc nuclear reaction to monitor proton beams: new measurements and consequences on the earlier reported data.", Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 198 (3-4) (2002) 183-196.
  13. Uddin Kh Mayeen, et al., "Investigations of proton beam energy of the MC-50 cyclotron at KIRAMS.", Int. J. Phys. Sci. 6 (13) (2011) 3168-3174.
  14. J.H. Kim, et al., Proton beam energy measurement with the stacked Cu foil technique for medical radioisotope production, J. Kor. Phys. Soc. 48 (4) (2006) 755-758.
  15. P. Reimer, S.M. Qaim, Excitation functions of proton induced reactions on highly enriched 58Ni with special relevance to the production of 55Co and 57Co, Radiochim. Acta 80 (3) (1998) 113-120.
  16. Petr, Kopeck, "Proton beam monitoring via the Cu(p, x) 58Co, 63Cu(p, 2n) 62Zn and 65Cu(p, n) 65Zn reactions in copper.", Int. J. Appl. Radiat. Isot. 36 (8) (1985) 657-661.
  17. Heike Piel, S.M. Qaim, G. Stocklin, Excitation functions of (p, xn)-reactions on natNi and highly enriched 62Ni: possibility of production of medically important radioisotope 62Cu at a small cyclotron, Radiochim. Acta 57 (1) (1992) 1-6.
  18. M.A. Avila-Rodriguez, et al., Proton energy determination using activated yttrium foils and ionization chambers for activity assay, Nucl. Instrum. Methods Phys. Res. 267 (10) (2009) 1867-1872.
  19. China spallation neutron source: design, R&D, and outlook, Nucl. Instrum. Methods Phys. Res. A 600 (1) (2009) 10-13.
  20. Yingyi Liu, et al., Physical design of the APEP beam line at CSNS, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 1042 (2022), 167431.
  21. Alex Hermanne, et al., Reference cross sections for charged-particle monitor reactions, Nucl. Data Sheets 148 (2018) 338-382.
  22. https://www.nndc.bnl.gov/nudat3/.
  23. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, "SRIM - the stopping and range of ions in matter, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 268 (2010) 11-12, 2008):1818-1823.
  24. L.Y. Zhang, et al., Design of Back-Streaming White Neutron Beam Line at CSNS." Applied Radiation and Isotopes: Including Data, Instrumentation and Methods for Use in Agriculture, Industry and Medicine, 2018.
  25. P.S. Tavernier, Experimental Techniques in Nuclear and Particle Physics, Springer Berlin Heidelberg, 2010.
  26. W. Ulmer, Theoretical aspects of energy-range relations, stopping power and energy straggling of protons, Radiat. Phys. Chem. 76 (7) (2007) 1089-1107.