DOI QR코드

DOI QR Code

Characteristics of debris resulting from simulated molten fuel coolant interactions in SFRS

  • E. Hemanth Rao (Homi Bhabha National Institute, Training School Complex) ;
  • Prabhat Kumar Shukla (Indira Gandhi Centre for Atomic Research) ;
  • D. Ponraju (Homi Bhabha National Institute, Training School Complex) ;
  • B. Venkatraman (Indira Gandhi Centre for Atomic Research)
  • 투고 : 2023.06.16
  • 심사 : 2023.09.30
  • 발행 : 2024.01.25

초록

Sodium cooled Fast Reactors (SFR) are built with several engineered safety features and hence a severe accident such as a core melt accident is hypothetical with a probability of <10-6/ry. However, in case of such accidents, the mixture of the molten fuel and structural materials interacts with sodium. This phenomenon is known as Molten Fuel Coolant Interaction (MFCI) and results in fragmentation of the melt due to various instabilities. The fragmented particles settle as a debris bed on the core catcher at the bottom of the reactor vessel, and continue to generate decay heat. Characteristics of the debris particles play a vital role in heat transfer from the bed and need thorough investigation. The size, shape, and physical state of the debris depend on the associated fragmentation mechanism, superheating of the melt, and sodium temperature. Experiments have been conducted by releasing simulated corium, a molten mixture of alumina and iron generated by the aluminothermy process at ~2400 ℃ into liquid sodium, to study the fragmentation phenomena. After the experiment, the fragmented debris was retrieved and the particle size distribution was determined by sieve analysis. The debris was subjected to microscopic investigation for obtaining morphological characteristics. Based on the characteristics of debris, an attempt has been made to assess of fragmentation mechanism of simulated corium in sodium.

키워드

과제정보

Authors thank Mr. Sanjay Kumar Das, Mr. Lokesh, Mrs. Malarvizhi, Mr. S.S. Murthy, Ms. Hyma Kumari and Mr. Anandan for the experimental support. Authors acknowledge Mr. Vetrivendan for XRD analysis and Dr. S.R. Polaki for SEM. Authors thank ASME for permitting usage of part of the work published in proceedings of ICONE 28.

참고문헌

  1. S.C. Chetal, et al., The design of the prototype Fast breeder reactor, Nucl. Eng. Des. 236 (2006) 852-860, https://doi.org/10.1016/J.NUCENGDES.2005.09.025.
  2. L. Gnanadhas, A.K. Sharma, B. Malarvizhi, S.S. Murthy, E. Hemanth Rao, et al., PATH - an experimental facility for natural circulation heat transfer studies related to Post Accident Thermal Hydraulics, Nucl. Eng. Des. 241 (2011) 3839-3850, https://doi.org/10.1016/j.nucengdes.2011.06.054.
  3. E. Hemanth Rao, et al.. Simulation of Molten Fuel Coolant Interaction with High Temperature Melt in Water System, IIT Bombay, 2018.
  4. V. Jhade, P.K. Shukla, A. Jasmin Sudha, A.K. Sharma, E. Hemanth Rao, et al., Design of core catchers for sodium cooled FBRs - challenges, Nucl. Eng. Des. 359 (2020) 110473, https://doi.org/10.1016/J.NUCENGDES.2019.110473.
  5. R. Sunet, et al., From melt jet break-up to debris bed formation: a review of melt evolution model during fuel-coolant interaction, Ann. Nucl. Energy 165 (2022), https://doi.org/10.1016/j.anucene.2021.108642.
  6. A.R. Piriz, O.D. Cortazar, J.J. Lopez Cela, , et al.N.A. Tahir, The Rayleigh-Taylor instability, Am. J. Phys. 74 (2006) 1095-1098, https://doi.org/10.1119/1.2358158.
  7. D. Shvarts, et al., Shock-induced instability of interfaces, Handbook of Shock Waves (2001) 489-543, https://doi.org/10.1016/B978-012086430-0/50031-2.
  8. C. Peng, L. Tong, X. Cao, A hydrodynamic fragmentation model based on boundary layer stripping, Ann. Nucl. Energy 80 (2015) 95-100, https://doi.org/10.1016/J.ANUCENE.2015.01.034.
  9. T.G. Theofanous, M. Saito, An Assessment of CLASS-9 (CORE-MELT) Accidents for PWR Dry-Containment Systems, 1981.
  10. M. Epstein, H.K. Fauske, Applications of the turbulent entrainment assumption to immiscible gas-liquid and liquid-liquid systems, Chem. Eng. Res. Des. 79 (2001) 453-462, https://doi.org/10.1205/026387601750282382.
  11. S. Saito, Y. Abe, K. Koyama, Flow transition criteria of a liquid jet into a liquid pool, Nucl. Eng. Des. 315 (2017) 128-143, https://doi.org/10.1016/J.NUCENGDES.2017.02.011.
  12. G. Berthoud, A. Le Belguet, M. Zabi'ego, The Farahat sodium natural convection film boiling experiment revisited, Exp. Therm. Fluid Sci. 91 (2018) 117-125, https://doi.org/10.1016/J.EXPTHERMFLUSCI.2017.10.015.
  13. H. Schins, F.S. Gunnerson, Boiling and fragmentation behaviour during fuel-sodium interactions, Nucl. Eng. Des. 91 (1986) 221-235, https://doi.org/10.1016/0029-5493(86)90077-4.
  14. Q. Lin, Z. Wang, X. Cao, Study on the fragmentation of melt droplet triggered by boiling effect, Proc. Int. Conf. Nucl. Eng. (ICONE) 15 (2007), https://doi.org/10.1299/JSMEICONE.2007.15._ICONE1510_43.
  15. K.H. Bang, J.M. Kim, D.H. Kim, Experimental study of melt jet breakup in water, J. Nucl. Sci. Technol. 40 (2003) 807-813, https://doi.org/10.1080/18811248.2003.9715422.
  16. G. Berthoud, H. Jacobs, B. Knowles, Analysis of Large Scale UO2 Na Interactions Performed in Europe, 1994.
  17. G. Berthoud, Vapor Explosions, 2000. www.annualreviews.org.
  18. H. Mizuta, Fragmentation of uranium dioxide after molten uranium dioxide-sodium interaction, J. Nucl. Sci. Technol. 11 (1974) 480-487, https://doi.org/10.1080/18811248.1974.9730698.
  19. T.R. Johnson, J.R. Pavlik, L. Baker Jr., Postaccident Heat Removal: Large-Scale Molten-Fuel-Sodium Interaction Experiments, 1975, https://doi.org/10.2172/4228270.
  20. E.S. Sowa, J.D. Gaboret, et al., Molten Core Debris-Sodium Interactions, M-Series experiments [LMFBR], 1979, https://doi.org/10.2172/5959036.
  21. D. Magallon, H. Hohmann, H. Schins, Pouring of 100-kg-scale molten UO2 into sodium, Nucl. Technol. 98 (1992) 79-90, https://doi.org/10.13182/NT92-A34652.
  22. M. Johnson, C. Journeau, et al., Characterization of high-temperature nuclear fuel-coolant interactions through X-ray visualization and image processing, Ann. Nucl. Energy 151 (2021), 107881, https://doi.org/10.1016/J.ANUCENE.2020.107881.
  23. S. Nishimura, et al., Transformation and fragmentation behavior of molten metal drop in sodium pool, Nucl. Eng. Des. 237 (2007) 2201-2209, https://doi.org/10.1016/j.nucengdes.2007.03.021.
  24. F. Huber et al., "Experiments on the behaviour of thermite melt injected into sodium: Final report on the THINA test results." IAEA, 1994.
  25. S. Kondoet, et al., Experimental study on simulated molten jet-coolant interactions, Nucl. Eng. Des. 155 (1995) 73-84, https://doi.org/10.1016/0029-5493(94)00870-5.
  26. Y. Abeet, et al., Fragmentation behavior during molten material and coolant interactions, Nucl. Eng. Des. 236 (2006) 1668-1681, https://doi.org/10.1016/j.nucengdes.2006.04.008.
  27. A.M. Mathaiet, et al., Investigation of fragmentation phenomena and debris bed formation during core meltdown accident in SFR using simulated experiments, Nucl. Eng. Des. 292 (2015) 87-97, https://doi.org/10.1016/J.NUCENGDES.2015.06.002.
  28. E. Hemanth Rao, P.K. Shukla, et al., Generation of simulated corium using thermite process, Ann. Nucl. Energy 163 (2021), https://doi.org/10.1016/j.anucene.2021.108558.
  29. H.K. Fauske, On the mechanism of uranium dioxide-sodium explosive interactions, Nucl. Sci. Eng. 51 (1973) 95-101, https://doi.org/10.13182/NSE73-A26584.
  30. I. Huhtiniemi, D. Magallon, H. Hohmann, Results of recent KROTOS FCI tests: alumina versus corium melts, Nucl. Eng. Des. 189 (1999) 379-389, https://doi.org/10.1016/S0029-5493(98)00269-6.
  31. H.K. Fauske, K. Koyama, S. Kubo, Assessment of the FBR core disruptive accident (CDA): the role and application of general behavior principles (gbps)), J. Nucl. Sci. Technol. 39 (2002) 615-627, https://doi.org/10.1080/18811248.2002.9715242.
  32. K.I. Matsuba, et al., Experimental discussion on fragmentation mechanism of molten oxide discharged into a sodium pool, in: International Conference on Nuclear Engineering,, American Society of Mechanical Engineers (ASME), 2015, https://doi.org/10.1299/mej.15-00595.
  33. D. Magallon, H. Hohmann, H. Schins, Pouring of 100-kg-scale molten UO2 into sodium, Nucl. Technol. 98 (1992) 79-90, https://doi.org/10.13182/NT92-A34652.
  34. M. Amblard et al., Out-of-pile studies in France on sodium fuel interaction, Proceedings of the Fast Reactor Safety Meeting Held on April 2-4,1974, at Beverly Hills, California (CONF-740401) .
  35. E.S. Sowa, J.D. Gabor, et al., Molten Core Debris-Sodium Interactions, M-Series experiments [LMFBR], 1979, https://doi.org/10.2172/5959036.
  36. P. Piluso, G. Trillon, D. Magallon, Material effect and steam explosion at high temperature (T > 2300 K), Int. J. Thermophys. 26 (2005) 1095-1114, https://doi.org/10.1007/s10765-005-6687-7.
  37. V. Tyrpekl, P. Piluso, Analysis of material effect in molten fuel-coolant interaction, comparison of thermodynamic calculations and experimental observations, Ann. Nucl. Energy 46 (2012) 197-203, https://doi.org/10.1016/J.ANUCENE.2012.03.035.
  38. L. Hu, et al., Experimental study on fragmentation characteristics of molten aluminum/copper jet penetrating in sodium pool, Int. J. Heat Mass Tran. 139 (2019) 492-502, https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.044.
  39. V. Tyrpekl, et al., Material effect in the nuclear fuel-coolant interaction: analyses of prototypic melt fragmentation and solidification in the KROTOS facility, Nucl. Technol. 186 (2014) 229-240, https://doi.org/10.13182/NT13-63.
  40. K.I. Matsuba, et al., Distance for fragmentation of a simulated molten-core material discharged into a sodium pool, J. Nucl. Sci. Technol. 53 (2016) 707-712, https://doi.org/10.1080/00223131.2015.1113897.