DOI QR코드

DOI QR Code

Thermo-hydrodynamic investigation into the effects of minichannel configuration on the thermal performance of subcooled flow boiling

  • Amal Igaadi (Laboratory of Energy and Materials Engineering (LEME), Faculty of Sciences and Technologies (FST), SultanMoulay Slimane University (SMSU)) ;
  • Rachid El Amraoui (Laboratory of Energy and Materials Engineering (LEME), Faculty of Sciences and Technologies (FST), SultanMoulay Slimane University (SMSU)) ;
  • Hicham El Mghari (Laboratory of Energy and Materials Engineering (LEME), Faculty of Sciences and Technologies (FST), SultanMoulay Slimane University (SMSU))
  • Received : 2023.01.31
  • Accepted : 2023.09.30
  • Published : 2024.01.25

Abstract

The current research focuses on the development of a numerical approach to forecast strongly subcooled flow boiling of FC-72 as the refrigerant in various vertical minichannel shapes for high-heat-flux cooling applications. The simulations are carried out using the Volume of Fluid method with the Lee phase change model, which revealed some inherent flaws in multiphase flows that are primarily due to an insufficient interpretation of shearlift force on bubbles and conjugate heat transfer against the walls. A user-defined function (UDF) is used to provide specific information about this noticeable effect. The influence of shape and the inlet mass fluxes on the flow patterns, heat transfer, and pressure drop characteristics are discussed. The computational results are validated with experimental measurements, where excellent agreements are found that prove the efficiency of the present numerical model. The findings demonstrate that the heat transfer coefficient decreases as the mass flux increases and that the constriction design improves the thermal performance by 24.68% and 10.45% compared to the straight and expansion shapes, respectively. The periodic constriction sections ensure good mixing between the core and near-wall layers. In addition, a slight pressure drop penalty versus the thermal transfer benefits for the two configurations proposed is reported.

Keywords

References

  1. J.A. Olivier, J.B. Marcinichen, A. Bruch, J. Thome, Green cooling of high performancet microprocessors: parametric study between flow boiling and water cooling, ASME. Journal of Thermal Science and Engineering Applications 3 (4) (2011).
  2. H. Lv, H. Ma, Y. Zhao, N. Mao, T. He, Numerical simulation of flow boiling heat transfer characteristics of R134a/ethane binary mixture in horizontal micro-tube, Int. J. Refrig. 146 (2023) 126-134.
  3. S.S. Bertsch, E.A. Groll, S.V. Garimella, Review and comparative analysis of studies on saturated flow boiling in small channels, Nanoscale Microscale Thermophys. Eng. 12 (3) (2008) 187-227. https://doi.org/10.1080/15567260802317357
  4. D. Kromer, S. Garimella, S. Chandrasekaran, Experimental investigation and modeling of flow boiling in microchannel heat exchangers for integral steam generator applications, Nucl. Eng. Des. 372 (2021), 111001.
  5. J. Yan, Q. Bi, G. Zhu, L. Cai, Q. Yuan, H. Lv, Critical heat flux of highly subcooled water flow boiling in circular tubes with and without internal twisted tapes under high mass fluxes, Int. J. Heat Mass Tran. 95 (2016) 606-619. https://doi.org/10.1016/j.ijheatmasstransfer.2015.12.024
  6. R. Samaroo, N. Kaur, K. Itoh, T. Lee, S. Banerjee, M. Kawaji, Turbulent flow characteristics in an annulus under air bubble injection and subcooled flow boiling conditions, Nucl. Eng. Des. 268 (2014) 203-214. https://doi.org/10.1016/j.nucengdes.2013.04.046
  7. X. Zhang, T. Hu, D. Chen, Y. Zhong, H. Gao, CFD simulation on critical heat flux of flow boiling in IVR-ERVC of a nuclear reactor, Nucl. Eng. Des. 304 (2016) 70-79. https://doi.org/10.1016/j.nucengdes.2016.04.043
  8. E.J. Owoeye, D. Schubring, Computational modeling of bubble coalescence in a high-pressure steam-water flow, Nucl. Eng. Des. 319 (2017) 28-39. https://doi.org/10.1016/j.nucengdes.2017.04.032
  9. M. Azzolin, S. Bortolin, D.D. Col, Flow boiling heat transfer of a zeotropic binary mixture of new refrigerants inside a single microchannel, Int. J. Therm. Sci. 110 (2016) 83-95. https://doi.org/10.1016/j.ijthermalsci.2016.06.026
  10. C. Guo, J. Wang, X. Du, L. Yang, Experimental flow boiling characteristics of R134a/R245fa mixture inside smooth horizontal tube, Appl. Therm. Eng. 103 (2016) 901-908. https://doi.org/10.1016/j.applthermaleng.2016.04.162
  11. D. Cai, Y. Liu, X. Liang, J. Jiang, M. Fan, G. He, Experimental investigation of flow boiling heat transfer characteristics in smooth horizontal t, Int. J. Heat Mass Tran. 127 (2018) 799-812. https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.078
  12. X.L. Xie, Z.J. Liu, Y.L. He, W.Q. Tao, Numerical study of laminar heat transfer and pressure drop characteristics in a water-cooled minichannel heat sink, Appl. Therm. Eng. 29 (2009) 64-74. https://doi.org/10.1016/j.applthermaleng.2008.02.002
  13. D. Deng, R. Chen, H. He, J. Feng, Y. Tang, W. Zhou, Effects of heat flux, mass flux and channel size on flow boiling performance of reentrant porous microchannels, Exp. Therm. Fluid Sci. 64 (2015) 13-22. https://doi.org/10.1016/j.expthermflusci.2015.01.015
  14. T. Harirchian, S.V. Garimella, Effects of channel dimension, heat flux, and mass flux on flow boiling regimes in microchannels, Int. J. Multiphas. Flow 35 (2009) 349-362. https://doi.org/10.1016/j.ijmultiphaseflow.2009.01.003
  15. M. Nedaei, A.R. Motezakker, M.T.C. Zeybek, M. Sezen, G.O. Ince, A. Kosar, Subcooled flow boiling heat transfer enhancement using polyperfluorodecylacrylate (pPFDA) coated microtubes with different coating thicknesses, Exp. Therm. Fluid Sci. 86 (2017) 130-140. https://doi.org/10.1016/j.expthermflusci.2017.04.008
  16. Y. S,is,man, A.K. Sadaghiani, R. Khedir, M. Brozak, T. Karabacak, A. Kos,ar, Subcooled flow boiling over microstructured plates in rectangular minichannels, Nanoscale Microscale Thermophys. Eng. 20 (3-4) (2016) 173-190. https://doi.org/10.1080/15567265.2016.1248584
  17. W.-T. Hsu, N. Lee, D. Lee, J.J. Kim, M. Yun, H.H. Cho, Surfaces with bent micro-polymerized pillars exhibit enhanced heat transfer during subcooled flow boiling, Int. J. Heat Mass Tran. 182 (2022), 121941.
  18. M. Piasecka, An application of enhanced heating surface with mini-reentrant cavities for flow boiling research in minichannels, Heat Mass Tran. 49 (2013) 261-275. https://doi.org/10.1007/s00231-012-1082-y
  19. M. Piasecka, Heat transfer mechanism, pressure drop and flow patterns during FC-72 flow boiling in horizontal and vertical minichannels with enhanced walls, Int. J. Heat Mass Tran. 66 (2013) 472-488. https://doi.org/10.1016/j.ijheatmasstransfer.2013.07.046
  20. M. Piasecka, The use of enhanced surface in flow boiling heat transfer in a rectangular minichannel, Exp. Heat Tran.: A Journal of Thermal Energy Generation, Transport, Storage, and Conversion 27 (2014) 231-255.
  21. Y. Sun, L. Zhang, H. Xu, X. Zhong, Subcooled flow boiling heat transfer from microporous surfaces in a small channel, Int. J. Therm. Sci. 50 (2011) 881-889. https://doi.org/10.1016/j.ijthermalsci.2011.01.019
  22. M. Piasecka, K. Strak, Influence of the surface enhancement on the flow boiling heat transfer in a minichannel, Heat Tran. Eng. 40 (2018) 1162-1175. https://doi.org/10.1080/01457632.2018.1457264
  23. S.W. Lee, K.M. Kim, C. Bang, Study on flow boiling critical heat flux enhancement of graphene oxide/water nanofluid, Int. J. Heat Mass Tran. 65 (2013) 348-356. https://doi.org/10.1016/j.ijheatmasstransfer.2013.06.013
  24. Y. Wang, J.M. Wu, Numerical simulation on single bubble behavior during Al2O3/H2O nanofluids flow boiling using Moving Particle Simi-implicit method, Prog. Nucl. Energy 85 (2015) 130-139. https://doi.org/10.1016/j.pnucene.2015.06.017
  25. S.J. Kim, T. McKrell, J. Buongiorno, L.W. Hu, Subcooled flow boiling heat transfer of dilute alumina, zinc oxide, and diamond nanofluids at atmospheric pressure, Nucl. Eng. Des. 240 (2010) 1186-1194. https://doi.org/10.1016/j.nucengdes.2010.01.020
  26. S. aisorn, J. Kaew-On, S. Wongwises, Flow pattern and heat transfer characteristics of R-134a refrigerant during flow boiling in a horizontal circular mini-channel, Int. J. Heat Mass Tran. 3 (2010) 4023-4038.
  27. R. Ali, B. Palm, Dryout characteristics during flow boiling of R134a in vertical circular minichannels, Int. J. Heat Mass Tran. 54 (2011) 434-2445.
  28. Y.S. See, K.C. Leong, Entropy generation for flow boiling on a single semi-circular minichannel, Int. J. Heat Mass Tran. 154 (2020), 119689.
  29. K. Enoki, K. Miyata, H. Mori, K. Kariya, Y. Hamamoto, Boiling heat transfer and pressure drop of a refrigerant flowing vertically upward in small rectangular and triangular tubes, Heat Tran. Eng. 34 (2013) 966-975. https://doi.org/10.1080/01457632.2012.753576
  30. R.R. Bhide, S.G. Singh, A. Sridharan, S.P. Duttagupta, A. Agrawal, Pressure drop and heat transfer characteristics of boiling water in sub-hundred micron channel, Exp. Therm. Fluid Sci. 33 (2009) 963-975. https://doi.org/10.1016/j.expthermflusci.2009.04.004
  31. W. Chang, Wei, S.S. Zhang, S. Tian, M.J. Huo, Research on the flow boiling and heat transfer of ethanol in a corrugated mini-channel, Appl. Mech. Mater. 66-68 (2011) 876-881. https://doi.org/10.4028/www.scientific.net/AMM.66-68.876
  32. Y.K. Prajapati, M. Pathak, M.K. Khan, A comparative study of flow boiling heat transfer in three different configurations of microchannels, Int. J. Heat Mass Tran. 85 (2015) 711-722. https://doi.org/10.1016/j.ijheatmasstransfer.2015.02.016
  33. N. Tiwari, M.K. Moharana, Conjugate effect on flow boiling instability in wavy microchannel, Int. J. Heat Mass Tran. 166 (2021), 120791.
  34. C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys. 39 (1981) 201-225. https://doi.org/10.1016/0021-9991(81)90145-5
  35. J.U. Brackbill, D.B. Kothe, C. Zemach, A continuum method for modeling surface tension, J. Comput. Phys. 100 (1992) 130-139.
  36. F.R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J. (1994) 1598-1605.
  37. W.H. Lee, Pressure Iteration Scheme for Two-phase Flow Modeling, Multiphase Transport: Fundamentals, Reactor Safety, Applications, 1980, pp. 407-432.
  38. J.F. Klausner, R. Mei, D.M. Bernhard, L.Z. Zeng, Vapor bubble departure in forced convection boiling, Int. J. Heat Mass Tran. 3 (1993) 651-662.
  39. L.Z. Zeng, J.F. Klausner, D.M. Bernhard, R. Mei, A unified model for the prediction of bubble detachment diameters in boiling systems-II. Flow boiling, Int. J. Heat Mass Tran. 36 (1993) 2271-2279. https://doi.org/10.1016/S0017-9310(05)80112-7
  40. J. Lee, L.E. O'Neill, S. Lee, I. Mudawar, Experimental and computational investigation on two-phase flow and heat transfer of highly subcooled flow boiling in vertical upflow, Int. J. Heat Mass Tran. 136 (2019) 1199-1216.  https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.046