DOI QR코드

DOI QR Code

Optical, thermal and gamma ray attenuation characteristics of tungsten oxide modified: B2O3-SrCO3-TeO2-ZnO glass series

  • Hammam Abdurabu Thabit (Department of Physics, Universiti Teknologi Malaysia) ;
  • Abd Khamim Ismail (Department of Physics, Universiti Teknologi Malaysia) ;
  • M.I. Sayyed (Department of Physics, Faculty of Science, Isra University) ;
  • S. Hashim (Department of Physics, Universiti Teknologi Malaysia) ;
  • I. Abdullahi (Department of Physics, Universiti Teknologi Malaysia) ;
  • Mohamed Elsafi (Physics Department, Faculty of Science, Alexandria University) ;
  • K. Keshavamurthy (Department of Physics, Dayananda Sagar College of Engineering) ;
  • G. Jagannath (Department of Physics, School of Engineering, Presidency University)
  • Received : 2023.06.30
  • Accepted : 2023.09.29
  • Published : 2024.01.25

Abstract

The glass series modified by tungsten oxide was created using the compounds (75-x) B2O3- 10SrCO3- 8TeO2- 7ZnO - xWO3, where x = 0, 1, 5, 10, 22, 27, 34, and 40% mole percentage. A UV-visible spectrophotometer and thermogravimetric-differential thermal analysis (TG-DTA) methods were employed to characterize the specimen's optical and phase transition attributes, respectively. The mass-attenuation coefficient (AC) of all created glasses from BSTZW0 to BSTZ7 was estimated using Geant4 code from 0.05 to 3 MeV and compared to the XCOM software results, with a relative difference of less than 2% between the two results. The increase of WO3 percentage lead to an increase in the Linear-AC at each studied energy, and this is mainly due to the fact that the higher the percentage of WO3 in the glass increases its density which causes an increase in the Linear-AC, so an energy of 0.06 MeV, as an example, the values of the Linear-AC was 4.009, 4.509, 5.442, 6812, 8.564, 9.856, 10.999 and 11.628 cm-1 form BSTZW0 too BSTZW7, respectively. The Half-VL (value layer), Mean-FP (free path), Tenth-VL, and Radiation attenuation performance (RAP) were also calculated for the current BSTZW-glass samples and revealed that BSTZW7 had the best gamma ray attenuation performance at all discussed energies when compared to other studied glass samples.

Keywords

Acknowledgement

This work was supported by UTM-Professional Development Research University (POST DOCTORAL FELLOWSHIP Ref No: PY/2022/03183) and FRGS grant Ref No: PY/2019/01269). (vot num:R. J130000.7113.06E13, Ref No: PY/2019/01269).

References

  1. V. S, et al., Boron carbide dispersed epoxy composites for gamma radiation shielding applications, Vacuum 205 (2022), 111474. 
  2. D. Vrushabhadas Shastri, et al., Structural and physico-mechanical investigations of Na2B4O7 geopolymer for γ-radiation attenuating applications, Ceram. Int. 48 (19) (2022) 29359-29365. Part B).  https://doi.org/10.1016/j.ceramint.2022.05.381
  3. M.I. Sayyed, M.H.A. Mhareb, Y.S.M. Alajerami, K.A. Mahmoud, Mohammad A. Imheidat, Fatimh Alshahri, Muna Alqahtani, T. Al-Abdullah, Optical and radiation shielding features for a new series of borate glass samples, Optik 239 (2021) 166790. 
  4. H.A. Thabit, N.A. Kabir, The study of X-ray effect on structural, morphology and optical properties of ZnO nanopowder, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 436 (2018) 278-284.  https://doi.org/10.1016/j.nimb.2018.10.012
  5. H.A. Thabit, et al., A closer look at the structure and gamma-ray shielding properties of newly designed boro -tellurite glasses reinforced by bismuth (III) oxide, Nucl. Eng. Technol. 55 (5) (2023) 1734-1741.  https://doi.org/10.1016/j.net.2022.12.036
  6. H.A. Thabit, et al., Development of Ag-doped ZnO thin films and thermoluminescence (TLD) characteristics for radiation technology, Nanomaterials 12 (17) (2022) 3068. 
  7. M.U. Khandaker, et al., The significance of nuclear data in the production of radionuclides for theranostic/therapeutic applications, Radiat. Phys. Chem. 200 (2022), 110342. 
  8. M.A. Imheidat, et al., Radiation shielding, mechanical, optical, and structural properties for tellurite glass samples, Optik 268 (2022), 169774. 
  9. S. Kim, et al., Tungsten nanoparticle anchoring on boron nitride nanosheet-based polymer nanocomposites for complex radiation shielding, Compos. Sci. Technol. 221 (2022), 109353. 
  10. M.R. Ambika, et al., Preparation and characterisation of Isophthalic-Bi2O3 polymer composite gamma radiation shields, Radiat. Phys. Chem. 130 (2017) 351-358.  https://doi.org/10.1016/j.radphyschem.2016.09.022
  11. M.J.R. Aldhuhaibat, et al., Improved gamma radiation shielding traits of epoxy composites: evaluation of mass attenuation coefficient, effective atomic and electron number, Radiat. Phys. Chem. 179 (2021), 109183. 
  12. N.K. Libeesh, et al., Applicability of the multispectral remote sensing on determining the natural rock complexes distribution and their evaluability on the radiation protection applications, Radiat. Phys. Chem. 193 (2022), 110004. 
  13. M.I. Sayyed, Kawa M. Kaky , Erdem S, akar, Ugur ˘ Akbaba , Malaa M. Taki, O. Agar, Gamma radiation shielding investigations for selected germanate glasses, Journal of Non-Crystalline Solids 512 (2019) 33-40.  https://doi.org/10.1016/j.jnoncrysol.2019.02.014
  14. ] H. O. Tekin, M. I. Syyed, E. E. Altunsoy, T. Manici. Shielding properties and effects of wo3 and pbo on mass attenuation coefficients by using MCNPX code, Digest Journal of Nanomaterials and Biostructures12 (2017) 861-867. 
  15. W. Chaiphaksa, et al., Mathematical calculation of gamma rays interaction in bismuth gadolinium silicate glass using WinXCom program, Mater. Today: Proc. 65 (2022) 2412-2415.  https://doi.org/10.1016/j.matpr.2022.05.529
  16. R. Bagheri, A. Khorrami Moghaddam, H. Yousefnia, Gamma ray shielding study of barium-bismuth-borosilicate glasses as transparent shielding materials using MCNP-4C code, XCOM program, and available experimental data, Nucl. Eng. Technol. 49 (1) (2017) 216-223.  https://doi.org/10.1016/j.net.2016.08.013
  17. M. Zubair, E. Ahmed, D. Hartanto, Comparison of different glass materials to protect the operators from gamma-rays in the PET using MCNP code, Radiat. Phys. Chem. 190 (2022), 109818. 
  18. Mohammad Ibrahim Abualsayed, Radiation attenuation attributes for BaO-TiO2-SiO2-GeO2 glass series: a comprehensive study using Phy-X software, Radiochim. Acta 2023; 111(3): 211-216.  https://doi.org/10.1515/ract-2022-0095
  19. N. Wantana, et al., Radio, cathodo and photoluminescence investigations of high density WO3-Gd2O3-B2O3 glass doped with Tb3+, Radiat. Phys. Chem. 164 (2019), 108350. 
  20. I.S. Mahmoud, et al., Gamma, neutron shielding and mechanical parameters for lead vanadate glasses, Ceram. Int. 45 (11) (2019) 14058-14072.  https://doi.org/10.1016/j.ceramint.2019.04.105
  21. K.A. Naseer, K. Marimuthu, K.A. Mahmoud, M.I. Sayyed, Impact of Bi2O3 modifier concentration on barium-zincborate glasses: physical, structural, elastic, and radiation-shielding properties, Eur. Phys. J. Plus 136 (2021) 116. 
  22. H.A. Thabit, et al., A closer look at the structure and gamma-ray shielding properties of newly designed boro -tellurite glasses reinforced by bismuth (III) oxide, Nucl. Eng. Technol. 55 (5) (2023) 1734-1741.  https://doi.org/10.1016/j.net.2022.12.036
  23. I.G. Geidam, et al., Oxide ion polarizabilities and gamma radiation shielding features of TeO2-B2O3-SiO2 glasses containing Bi2O3 using Phy-X/PSD software, Mater. Today Commun. 31 (2022), 103472. 
  24. B. Aktas, et al., The role of TeO2 insertion on the radiation shielding, structural and physical properties of borosilicate glasses, J. Nucl. Mater. 563 (2022), 153619. 
  25. M. Fidan, et al., Optical, structural, physical, and nuclear shielding properties, and albedo parameters of TeO2-BaO-B2O3-PbO-V2O5 glasses, J. Phys. Chem. Solid. 163 (2022), 110543. 
  26. K.L. Skerratt-Love, et al., The effects of phosphorus pentoxide additions on the thermal, rheological, and structural properties of sodium borosilicate glass, J. Non-Cryst. Solids 600 (2023), 121999. 
  27. M.B. Mama Toulou, P.C.M. Fossati, C.L. Rountree, Systematic approach to thermophysical and mechanical properties of SiO2-B2O3-Na2O glasses using molecular dynamics simulations, J. Non-Cryst. Solids 603 (2023), 122099. 
  28. S. Rajesham, et al., Impact of MoO3 on physical and spectroscopic (optical, FTIR, Raman and EPR) studies of B2O3-CdO-Al2O3-ZnF2 glasses for optical and shielding applications, Optik 272 (2023), 170241. 
  29. S. Mukamil, et al., Lead-borate glass system doped with Sm3+ ions for the X-ray shielding applications, Results Phys. 43 (2022), 106121. 
  30. H.A. Thabit, et al., Preparation, characterization, and mechanical-optical properties of telluro-borate glasses containing tungsten, Ceram. Int. 49 (16) (2023) 26505-26515.  https://doi.org/10.1016/j.ceramint.2023.05.185
  31. V. Zanganeh, Effect of WO3 addition on mechanical, structural, optical, and radiation shielding properties of lead boro phosphate glasses system using Monte Carlo simulation, Optik 269 (2022), 169900. 
  32. A. Kozlovskiy, М.V. Zdorovets, K.K. Kadyrzhanov, Study of physical, optical properties and gamma radiation shielding efficiency of 0.5Bi2O3-(0.5-x)WO3-xPbO glasses, Opt. Mater. 114 (2021), 111005. 
  33. G.P. Singh, et al., Analysis of enhancement in gamma ray shielding proficiency by adding WO3 in Al2O3-PbO-B2O3 glasses using Phy-X/PSD, J. Mater. Res. Technol. 9 (6) (2020) 14425-14442.  https://doi.org/10.1016/j.jmrt.2020.10.020
  34. S. Ravangvong, et al., Behaviors of TeO2-B2O3-WO3 glass system for ionizing radiation shielding performance: photon, protons and alpha particles, Mater. Today: Proc. 65 (2022) 2269-2276.  https://doi.org/10.1016/j.matpr.2022.04.005
  35. J.F. Briesmeister, MCNPTM-A General Monte Carlo N-Particle Transport Code, in: Version 4C, LA-13709-M, vol. 2, Los Alamos National Laboratory, 2000. 
  36. M.T. Alabsy, et al., Gamma-ray attenuation and exposure buildup factor of novel polymers in shielding using Geant4 simulation, Materials 14 (17) (2021) 5051. 
  37. S. Hurtado, M. Garcia-Leon, ' R. Garcia-Tenorio, GEANT4 code for simulation of a germanium gamma-ray detector and its application to efficiency calibration, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 518 (3) (2004) 764-774.  https://doi.org/10.1016/j.nima.2003.09.057
  38. Y. Karabul, O. Icelli, The assessment of usage of epoxy based micro and nanostructured composites enriched with Bi2O3 and WO3 particles for radiation shielding, Results Phys. 26 (2021), 104423. 
  39. H. Aboud, M.J. Aldhuhaibat, Y. Alajermi, Gamma radiation shielding traits of B2O3-Bi2O3-CdO-BaO-PbO glasses, Radiat. Phys. Chem. 191 (2022), 109836. 
  40. F. Ameri, et al., Steel fibre-reinforced high-strength concrete incorporating copper slag: mechanical, gamma-ray shielding, impact resistance, and microstructural characteristics, J. Build. Eng. 29 (2020), 101118. 
  41. P.-L. Degbe, et al., Elemental characterization of quartzite of Pouma sub-division of Cameroon and radiation attenuation properties based on XCOM and GEANT4 Monte Carlo simulation, Radiat. Eff. Defect Solid (2022) 1-18. 
  42. R.M. El-Sharkawy, et al., Investigation of mechanical and radiation shielding characteristics of novel glass systems with the composition xNiO-20ZnO-60B2O3-(20-x) CdO based on nanometal oxides, J. Non-Cryst. Solids 528 (2020), 119754. 
  43. E. Hannachi, et al., Structural, optical and radiation shielding peculiarities of strontium titanate ceramics mixed with tungsten nanowires: An experimental study, Opt. Mater. 135 (2023) 113317. 
  44. M.I. Sayyed, et al., Effect of WO3 Nanoparticles on the Radiative Attenuation Properties of SrTiO3 Perovskite Ceramic, Crystals 12 (11) (2022) 1602. 
  45. M.I. Sayyed et al, Green Conversion of the Hazardous Cathode Ray Tube and Red Mud into Radiation Shielding Concrete, Materials 15 (2022) 5316. 
  46. P. Tamayo, et al., 13 - radiological shielding concrete using steel slags, in: J. de Brito, et al. (Eds.), Waste and Byproducts in Cement-Based Materials, Woodhead Publishing, 2021, pp. 413-438. 
  47. C.H. Kam, S. Buddhudu, Emission analysis of Eu3+:Bi2O3-B2O3-R2O (R=Li,Na,K) glasses, J. Quant. Spectrosc. Radiat. Transf. 87 (3) (2004) 325-337.  https://doi.org/10.1016/j.jqsrt.2004.03.006
  48. G. Lakshminarayana, et al., Photoluminescence of Eu3+-, Tb3+-, Dy3+- and Tm3 +-doped transparent GeO2-TiO2-K2O glass ceramics, J. Phys. Condens. Matter 20 (33) (2008), 335106. 
  49. H.A. Thabit, et al., Exploring the properties of Dy2O3-Y2O3 Co-activated telluro-borate glass: structural, physical, optical, thermal, and mechanical properties, Heliyon 9 (7) (2023), e18309. 
  50. H.A. Thabit, et al., Structural, thermal, and mechanical investigation of telluro-borate-Bismuth glass for radiation shielding, J. Mater. Res. Technol. 24 (2023) 4353-4363. 
  51. H.A. Thabit, et al., Synthesis, structural, optical, and thermoluminescence properties of ZnO/Ag/Y nanopowders for electronic and dosimetry applications, Ceram. Int. 47 (3) (2021) 4249-4256.  https://doi.org/10.1016/j.ceramint.2020.10.002
  52. N. Alonizan, et al., Physical, optical, and ionizing radiation shielding properties for barium-tellurite glass with different oxides: an experimental study, Opt. Mater. 143 (2023), 114177. 
  53. E.A. Davis, N.F. Mott, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors, Phil. Mag.: A Journal of Theoretical Experimental and Applied Physics 22 (179) (1970) 903-922. 
  54. H.A. Thabit, et al., Physical, optical and spectroscopic characteristics investigation for doped Dy3+ borate glass matrix, J. Non-Cryst. Solids 608 (2023), 122258. 
  55. N. Elkhoshkhany, Optical properties of WO3-PbO tellurite glasses doped with rare earths, Journal of Chemistry and Chemical Engineering 8 (1) (2014) 11. 
  56. S. Arunkumar, et al., Physical, structural, optical, and radiation screening studies on Dysprosium ions doped Niobium Bariumtelluroborate glasses, Radiat. Phys. Chem. 204 (2023), 110669. 
  57. A.S. Alqarni, et al., Exploring the physio-elastic properties and optical band gap energies of boro-telluro-dolomite glasses infused with Nd2O3 dopants, Optik 288 (2023), 171149. 
  58. A. Bafaqeer, et al., Fabrication of reduced graphene oxide (rGO) mediated ZnV2O6 nanosheets for enhancing photocatalytic CO2 reduction under UV and solar light irradiation, Inorg. Chem. Commun. 155 (2023), 110993. 
  59. S.A. Bassam, et al., Effect of Tm2O3 addition on the physical, structural, elastic, and radiation-resisting attributes of tellurite-based glasses, Radiat. Phys. Chem. 209 (2023), 110988. 
  60. S.A. Bassam, et al., Physical, structural, elastic and optical investigations on Dy3+ ions doped boro-tellurite glasses for radiation attenuation application, Radiat. Phys. Chem. 206 (2023), 110798. 
  61. D.A. Aloraini, et al., Experimental investigation of radiation shielding competence of Bi2O3-CaO-K2O-Na2O-P2O5 glass systems, Materials 14 (17) (2021) 5061. 
  62. M. Aladailah, et al., Radiation attenuation properties of novel glass system using experimental and Geant4 simulation, Radiat. Phys. Chem. 199 (2022), 110404. 
  63. N. Sangwaranatee, et al., Development of bismuth alumino borosilicate glass for radiation shielding material, Radiat. Phys. Chem. 186 (2021), 109542. 
  64. N. Wantana, et al., Development of WO3-Gd2O3- B2O3 high density glasses doped with Dy3+ for photonics and scintillation materials application, Solid State Sci. 101 (2020), 106135. 
  65. W. Cheewasukhanont, et al., High density of tungsten gadolinium borate glasses for radiation shielding material: effect of WO3 concentration, Radiat. Phys. Chem. 192 (2022), 109926. 
  66. E. Kaewnuam, et al., The influence of Gd2O3 on shielding, thermal and luminescence properties of WO3-Gd2O3-B2O3 glass for radiation shielding and detection material, Radiat. Phys. Chem. 190 (2022), 109805.