DOI QR코드

DOI QR Code

Acetylene Black의 분진폭발 특성 연구

Study on Dust Explosion Characteristics of Acetylene Black

  • 최재준 (세명대학학교 소방방재공학과) ;
  • 하동명 (세명대학교 보건안전학과)
  • Jae Jun Choi (Department of Fire Disaster Prevention Engineering Graduate School, Semyung University) ;
  • Dong Myeong Ha (Department of Occupational Health and Safety, Semyung University)
  • 투고 : 2023.12.26
  • 심사 : 2024.03.26
  • 발행 : 2024.04.30

초록

Recently, with the expanding market for electronic devices and electric vehicles, secondary battery usage has been on the rise. Lithium-ion batteries are particularly popular due to their fast charging times and lightweight nature compared to other types of batteries. A secondary battery consists of four components: anode, cathode, electrolyte, and separator. Generally, the positive and negative electrode materials of secondary batteries are composed of an active material, a binder, and a conductive material. Acetylene Black (AB) is utilized to enhance conductivity between active material particles or metal dust collectors, preventing the binder from acting as an insulator. However, when recycling waste batteries that have been subject to high usage, there is a risk of fire and explosion accidents, as accurately identifying the characteristics of Acetylene Black dust proves to be challenging. In this study, the lower explosion limit for Acetylene Black dust with an average particle size of 0.042 ㎛ was determined to be 153.64 mg/L using a Hartmann-type dust explosion device. Notably, the dust did not explode at values below 168 mg, rendering the lower explosion limit calculation unfeasible. Analysis of explosion delay times with varying electrode gaps revealed the shortest delay time at 3 mm, with a noticeable increase in delay times for gaps of 4 mm or greater. The findings offer fundamental data for fire and explosion prevention measures in Acetylene Black waste recycling processes via a predictive model for lower explosion limits and ignition delay time.

키워드

참고문헌

  1. J. K. Yoon, "Explsion Phenomena & Combusion", The Korean Society Of Automotive Engineers, Vol. 15, No. 5, pp. 42-46, 1993.
  2. S. H. Kim, "A Study on the Dust Explosion Characteristics of Bituminous Coal for Power Generation", Korean Journal of Hazardous Materials, Vol. 7, No. 2, pp. 83-99, 2019.
  3. K. W. Lee, "Hazard Evaluation on Fire and Explosion Characteristics of Resorcinol", The Korean Institute of Gas, Vol. 17, No. 4, pp. 45-50, 2013.
  4. H. C. Jung, "Overview and Future Concerns for Lithium-ion Batteries Materials", Journal of Powder Materials, Vol. 17, No. 3, pp. 175-189, 2010.
  5. J. J. Pyo, "Recoverty of Lithium Carbonate and Nickel from Cathode Active Material LNO(Li2NiO2) of Precursor Process Byproducts", The Korean Institute of Resources Recycling, Vol. 28, No. 4, pp. 30-36, 2019.
  6. Y. S. Goo, "Design of Lithium-ion battery Separator to Improve Low Temperature Characteristics", Journal of The Institute of Electronics and Information Engineers, Vol. 56, No. 7, pp. 741-746, 2019.
  7. J. Y. Um, "Method for Manufacturing Electrode Conductive Materials for Secondary Batteries and Lithium Secondary Batteries Containing Conductive Materials Manufactured by the Method", Korea, KR 10-0739943, 2006.
  8. J. H. Lee, "Discharge Capacity Variations Depending on the Weight Composition Ratio of Binder and Conductive Additive for Li-ion Batteries", Korean Society of Mechanical Engineers Spring and Autumn Conference, pp. 1591-1592, 2017.
  9. LG Ensol Battery LAB, "https://inside.lgensol.com".
  10. KOSHA, "https://www.kosha.or.kr/kosha/data/screeninge.do".
  11. ICIS, "https://icis.me.go.kr/main.do"
  12. Y. M. Dalya, "About Carbon Black as Rubber Reinforcement", Korea Rubber Society, Vol. 29, No. 4, pp. 376-391, 1994.
  13. T. Wada, "Production Method, Powder Properties and Uses of Acetylene Black", Carbon(Japan), pp. 247, 2011.
  14. M. Bhar, "A Review on Spent Lithium-ion Battery Recycling: from Collection to Black Mass Recovery", Royal Society of Chemistry, 2024.
  15. S. H. Hyun, "Explosion Riskiness with Flying of Carbon Black Dust by Hartman", Fire Science and Engineering, Vol. 12, No. 4, pp. 13-19, 1998.
  16. Y. M. Son, "Acetylene Black Production and Uses", ReSEAT, 2012.
  17. Britannica, Encyclopedia Britannica, "Carbon Black", 2024.
  18. KOSHA, "https://msds.kosha.or.kr/Carbon Black".
  19. Alfa Aesar, "https://www.alfa.co.kr/Carbon Black, acetylene, 50% compressed, 99.9+%".
  20. J. W. Lee, "Numerical Study on the Effect of Range Surrounding Environment on Detecting Time for Cooking Oil Fire in Kitchen", Fire Science and Engineering, Vol. 24, No. 1, pp. 134-139, 2010.
  21. ICIS, "https://icis.me.go.kr/chmCls/Carbon Black".
  22. ECHA, "https://echa.europa.eu/Carbon Black".
  23. V. Babrauskas, "Ignition Handbook", pp. 145, 2003.
  24. V. G. Shevchuk, "Effect of the Structure of a Gas Suspension on the Process of Flame Propagation", Combustion, Explosion and Shock Waves, Vol. 15, No. 6, pp. 41-45, 1979.
  25. I. Schoenewald, "Vereinfachte Methode zur Berechnung der unteren Zundgrenze von Staub/Luft-Gemischen", Vol. 31, No. 9, pp. 376-378, 1971.
  26. W. Buksowicz, "Flame Propagation in Dust-air Mixtures at Minimum Explosive Concentration", Shock, Waves, Explosions and Detonations, pp. 414-425, 1983.
  27. E. K. Addai, "Models to Estimate the Lower Explosion Limits of Dusts, Gases and Hybrid Mixtures", Vol. 48, No. 1, pp. 313-318, 2016.
  28. Motic, "Motic-BA-300-Instruction-Manual", 2021.
  29. Japanese Industrial Standards, JIS Z 8819-1, "Expression of Particle Size Measurement Results - Part 1: Diagrammatic Method", 1999.
  30. European Committee for Standardization, EN 13821, "Potentially Explsive Atmospheres - Explosion prevention and Protection - Determination of Minimum Ignition Energy of Dust/Air Mixtures", 2002.
  31. S. S. Shapiro, "Shapiro-Wilk W Test", Biometrika, pp. 591-611, 1965.
  32. S. M. Kim, "The Effects of Introverted or Extroverted Personality Type on The Resilience of Java Programming Learning : Focused on Students at Technical-Specialized High School", Journal of The Korean Association Information Education, Vol. 22, No. 4, pp. 439-446, 2018.
  33. S. J. Kwon, "Simulation on Optimum Repairing Number of Carbonated RC Structure Based on Probabilistic Approach", Korean Recycled Construction Resources Institute, Vol. 5, No. 3, pp. 230-238, 2017.
  34. D. M. Ha, "Measurement and Prediction of Fire and Explosion Characteristics of n-Butylacetate", J. Korean Soc. Saf., Vol. 32, No. 5, pp. 25-31, 2017.
  35. D. M. Ha, "Measurement and Prediction of Autoignition Temperature(AIT) of n-Propanol and Acetic acid System", J. Korean Soc. Saf., Vol. 32, No. 2, pp. 66-71, 2017.
  36. H. Y. Kang, "Group Contribution Method and Support Vector Regression based Model for Predicting Physical Properties of Aromatic Compounds", J. Korean Soc. Saf., Vol. 36, No. 1, pp. 1-8, 2021.