DOI QR코드

DOI QR Code

The preying capacity of mud crab (Scylla tranquebarica Fabricius, 1798) on live amphipods (Grandidierella megnae Giles, 1888)

  • Sulaeman Sulaeman (Research Center for Fisheries, National Research and Innovation Agency (BRIN)) ;
  • Herlinah Herlinah (Research Center for Fisheries, National Research and Innovation Agency (BRIN)) ;
  • Gunarto Gunarto (Research Center for Fisheries, National Research and Innovation Agency (BRIN)) ;
  • Nurfadila Nurfadila (Research Institute for Brackish Water Aquaculture and Fisheries Extension (RIBAFE)) ;
  • Rosmiati Rosmiati (Research Center for Fisheries, National Research and Innovation Agency (BRIN))
  • Received : 2023.11.08
  • Accepted : 2023.12.20
  • Published : 2024.03.31

Abstract

Amphipoda is a benthic fauna occupying aquatic environments that can be used as a live feed for mud crabs. The abundance of amphipods in the water is thought to impact the preying capacity of crablets, which in turn will affect their growth performance. This study aims to determine the preying capacity of the crablet stage of Scylla tranquebarica exposed at different densities (20, 30, and 40 amphipods / 0.5 L) of amphipod, Grandidierella megnae. The preying capacity was estimated by counting the number of amphipods ingested by an individual crablet during the 60-day rearing period. The main parameters measured were daily consumption rate (DCR), Cumulative molting (CM), Feed conversion ratio (FCR), and the specific growth rate of weight (SGR-W). The results showed that the DCR and FCR were not affected by amphipod densities but the higher the amphipod density the higher the SGR-W and CM. Based on this study, 30 amphipods / 0.5 L is recommended as the optimal density to optimize the DCR and improve the growth performance of crablets. It is also proposed that surplus live feed will potentially reduce the cannibalism rate of crablets during weaning. However, more research needs to be carried out to elucidate the benefits of crablet-feeding amphipods in communal systems.

Keywords

Acknowledgement

We would like to thank BRIN - LPDP through RIIM-2 2022/2023 and The Research Institute for Brackish Water Aquaculture and Fisheries Extension (RIBAFE) for partly supporting the implementation of the experiment.

References

  1. Aaqillah-Amr MA, Hidir A, David M, Ahmad-Ideris AR, Muhammad-Zulhilmi R, Julius YFS, et al. Development of semi-moist formulated feed for female orange mud crabs, Scylla olivacea (Herbst, 1796) broodstocks with graded lipid levels. Anim Feed Sci Technol. 2022;290:115365. 
  2. Alberts-Hubatsch H, Lee SY, Meynecke JO, Diele K, Nordhaus I, Wolff M. Life-history, movement, and habitat use of Scylla serrata (Decapoda, Portunidae): current knowledge and future challenges. Hydrobiologia. 2016;763:5-21.  https://doi.org/10.1007/s10750-015-2393-z
  3. Anh NTN, Ut VN, Wille M, Hoa NV, Sorgeloos P. Effect of different forms of Artemia biomass as a food source on survival, molting and growth rate of mud crab (Scylla paramamosain). Aquac Nutr. 2010;17:e549-58.  https://doi.org/10.1111/j.1365-2095.2010.00796.x
  4. Anonimous. Australian code for the care and use of animals for scientific purposes. 8th ed. [Internet]. National Health and Medical Research Council. 2013 [cited 2023 Jun 28] https://www.nhmrc.gov.au/file/17067/download?token=goNqvi4I 
  5. Baeza-Rojano E, Domingues P, Guerra-Garcia JM, Capella S, Norena-Barroso E, Caamal-Monsreal C, et al. Marine gammarids (Crustacea: Amphipoda): a new live prey to culture Octopus maya hatchlings. Aquac Res. 2012;44:1602-1612.  https://doi.org/10.1111/j.1365-2109.2012.03169.x
  6. Baeza-Rojano E, Hachero-Cruzado I, Guerra-Garcia JM. Nutritional analysis of freshwater and marine amphipods from the Strait of Gibraltar and potential aquaculture applications. J Sea Res. 2014;85:29-36.  https://doi.org/10.1016/j.seares.2013.09.007
  7. Baylon JC, Bravo MEA, Maningo NC. Ingestion of Brachionus plicatilis and Artemia salina nauplii by mud crab Scylla serrata larvae. Aquac Res. 2003;35:62-70.  https://doi.org/10.1111/j.1365-2109.2004.00987.x
  8. Baylon JC. Effects of salinity and temperature on survival and development of larvae and juveniles of the mud crab, Scylla serrata (Crustacea: Decapoda: Portunidae). J World Aquac Soc. 2010;41:858-73.  https://doi.org/10.1111/j.1749-7345.2010.00429.x
  9. Bolliet V, Azzaydi M, Boujard T. Effects of feeding time on feed intake and growth. In: Houlihan D, Boujard T, Jobling M, editors. Food intake in fish. Hoboken, NJ: Blackwell Science; 2001. p. 233-49. 
  10. Catacutan MR. Growth and body composition of juvenile mud crab, Scylla serrata, fed different dietary protein and lipid levels and protein to energy ratios. Aquaculture. 2002;208:113-23.  https://doi.org/10.1016/S0044-8486(01)00709-8
  11. Chang ES, Mykles DL. Regulation of crustacean molting: a review and our perspectives. Gen Comp Endocrinol. 2011;172:323-30.  https://doi.org/10.1016/j.ygcen.2011.04.003
  12. Cheng C, Ma H, Liu G, Deng Y, Jiang J, Feng J, et al. Biochemical, metabolic, and immune responses of mud crab (Scylla paramamosain) after mud crab reovirus infection. Fish Shellfish Immunol. 2022;127:437-45.  https://doi.org/10.1016/j.fsi.2022.06.058
  13. Corona A, Soto LA, Sanchez AJ. Epibenthic amphipod abundance and predation efficiency of the pink shrimp Farfantepenaeus duorarum (Burkenroad, 1939) in habitats with different physical complexity in a tropical estuarine system. J Exp Mar Biol Ecol. 2000;253:33-48.  https://doi.org/10.1016/S0022-0981(00)00236-7
  14. Eastman LB, Thiel M. Foraging behavior of crustacean predators and scavengers. In: Thiel M, Watling L, editors. The natural history of the crustacea: life styles and feeding biology. New York, NY: Oxford University Press; 2015. p. 535-56. 
  15. Fatihah SN, Julin HT, Chen CA. Survival, growth, and molting frequency of mud crab Scylla tranquebarica juveniles at different shelter conditions. AACL Bioflux. 2017;10:1581-9. 
  16. Fazhan H, Waiho K, Fujaya Y, Rukminasari N, Ma H, Ikhwanuddin M. Sexual dimorphism in mud crabs: a tale of three sympatric Scylla species. PeerJ. 2021;9:e10936. 
  17. Gomes do Vale J, Costa Barrilli GH, Chahad-Ehlers S, Olinto Branco J. Factors influencing the feeding habits of the ghost crab Ocypode quadrata (Fabricius, 1787) on subtropical sandy beaches. Estuar Coast Shelf Sci. 2022;269:107817. 
  18. Gong J, Huang C, Yu K, Li S, Zeng C, Ye H. The effects of feeding ration and cheliped autotomy on the growth and expression of ecdysteroid receptor in early juvenile mud crabs, Scylla paramamosain. Aquac Rep. 2022;25:101206. 
  19. Gunarto JH, Parenrengi A. Petunjuk teknis pembenihan kepiting bakau, Scylla spp. Maros: Balai penelitian dan pengembangan budidaya air payau; 2014. 
  20. Harvey EA, Epifanio CE. Prey selection by larvae of the common mud crab Panopeus herbstii Milne-Edwards. J Exp Mar Biol Ecol. 1997;217:79-91.  https://doi.org/10.1016/S0022-0981(97)00045-2
  21. Heasman MP. Aspects of the general biology and fishery of the mud crab Scylla serrata (Forskal) in Moreton Bay, Queensland [Ph.D. dissertation]. Brisbane: The University of Queensland; 1980. 
  22. Herlinah, Sulaeman, Gunarto. The potential used of Amphipod-Crustacea as live food for blue swimmer crab, Portunus pelagicus crablet. IOP Conf Ser Earth Environ Sci. 2020;777:012021.  https://doi.org/10.1088/1755-1315/777/1/012021
  23. Ikhwanuddin M, Lan SS, Abdul Hamid N, Fatihah Zakaria SN, Azra MN, Siti Aisah A, et al. The embryonic development of orange mud crab, Scylla olivacea (Herbst, 1796) held in the captivity. Iran J Fish Sci. 2015;14:885-95. 
  24. Jimenez-Prada P, Hachero-Cruzado I, Giraldez I, Fernandez-Diaz C, Vilas C, Canavate JP, et al. Crustacean amphipods from marsh ponds: a nutritious feed resource with potential for application in integrated multi-trophic aquaculture. PeerJ. 2018;6:e4194. 
  25. Johnston MD, Johnston DJ, Jones CM. Evaluation of partial replacement of live and fresh feeds with a formulated diet and the influence of weaning Panulirus ornatus phyllosomata onto a formulated diet during early ontogeny. Aquac Int. 2008;16:33-47.  https://doi.org/10.1007/s10499-007-9121-2
  26. Jumawan CQ, Metillo EB, Polistico JP. Assessment of mud crab fishery in Panguil Bay. Philipp J Fish. 2021;28:18-33.  https://doi.org/10.31398/tpjf/28.1.2020A0002
  27. Kamaruddin K, Usman U, Laining A. Performa pertumbuhan krablet kepiting bakau (Scylla olivacea) dengan frekuensi pemberian pakan berbeda pada stadia pendederan. J Ris Akuakultur. 2016;11:163-70.  https://doi.org/10.15578/jra.11.2.2016.163-170
  28. Kujur P, Pati AK, Parganiha A. Locomotor activity rhythm in catfish Heteropneustes fossilis as a function of shoal size under different light regimens. Chronobiol Int. 2021;38:1726- 37. https://doi.org/10.1080/07420528.2021.1945073
  29. Leger P, Bengtson DA, Simpson KL, Sorgeloos P. The use and nutritional value of Artemia as a food source. Oceanogr Mar Biol Ann Rev. 1986;24:521-623. 
  30. Leger P, Bengtson DA, Sorgeloos P, Simpson KL, Beck AD. The nutritional value of Artemia: a review. Artemia Res Appl. 1987;3:357-72. 
  31. Liew KS, Tan K, Liew HJ, Masuda R, Shapawi R, Tuzan AD, et al. Responses of purple mud crab (Scylla tranquebarica) to various saccharide solutions and the saccharide-coated pelleted feeds. Appl Anim Behav Sci. 2022;257:105793. 
  32. Ma K, Liu Z, Qiao G, Ma L, Zhang F, Zhao M, et al. Effects of four diets on the metabolism of megalopa metamorphosis of the mud crab, Scylla paramamosain. Front Mar Sci. 2023;10:1-14.  https://doi.org/10.3389/fmars.2023.1276717
  33. Moren M, Suontama J, Hemre GI, Karlsen O, Olsen RE, Moren M, et al. Element concentrations in meals from krill and amphipods, - possible alternative protein sources in complete diets for farmed fish. Aquaculture. 2006;261:174-81.  https://doi.org/10.1016/j.aquaculture.2006.06.022
  34. Nguyen NTB, Chim L, Lemaire P, Wantiez L. Feed intake, molt frequency, tissue growth, feed efficiency and energy budget during a molt cycle of mud crab juveniles, Scylla serrata (Forskal, 1775), fed on different practical diets with graded levels of soy protein concentrate as main source of protein. Aquaculture. 2014;434:499-509.  https://doi.org/10.1016/j.aquaculture.2014.09.014
  35. Opstad I, Suontama J, Langmyhr E, Olsen RE. Growth, survival, and development of Atlantic cod (Gadus morhua L.) weaned onto diets containing various sources of marine protein. ICES J Mar Sci. 2006;63:320-5.  https://doi.org/10.1016/j.icesjms.2005.11.014
  36. Promthale P, Withyachumnarnkul B, Bossier P, Wongprasert K. Nutritional value of the amphipod Bemlos quadrimanus sp. grown in shrimp biofloc ponds as influenced by different carbon sources. Aquaculture. 2021;533:736128. 
  37. Rahman MR, Asaduzzaman M, Zahangir MM, Islam SMR, Nahid SAA, Jahan DA, et al. Evaluation of limb autotomy as a promising strategy to improve production performances of mud crab (Scylla olivacea) in the soft-shell farming system. Aquac Res. 2020;51:2555-72.  https://doi.org/10.1111/are.14598
  38. Ruscoe IM, Shelley CC, Williams GR. The combined effects of temperature and salinity on growth and survival of juvenile mud crabs (Scylla serrata Forskal). Aquaculture. 2004;238:239-47.  https://doi.org/10.1016/j.aquaculture.2004.05.030
  39. Shao L, Wang C, He J, Wu X, Cheng Y. Hepatopancreas and gonad quality of Chinese mitten crabs fattened with natural and formulated diets. J Food Qual. 2013;36:217-27.  https://doi.org/10.1111/jfq.12030
  40. Shelley C, Lovatelli A. A mud crab aquaculture: a practical manual. Rome: Food and Agriculture Organization of the United Nations [FAO]; 2011. Fisheries and Aquaculture Technical Paper No.: 567. p. 78.
  41. Sulaeman, Herlinah, Parenrengi A. The consumption rate of tiger prawns (Penaeus monodon) on alive Amphipod-Crustacean. IOP Conf Ser Earth Environ Sci. 2020;564:012087. 
  42. Syafaat MN, Azra MN, Waiho K, Fazhan H, Abol-Munafi AB, Ishak SD, et al. A review of the nursery culture of mud crabs, genus Scylla: current progress and future directions. Animals. 2021;11:2034. 
  43. Syafaat MN, Mohammad S, Azra MN, Ma H, Abol-munafi AB, Ikhwanuddin M. Effect of water temperature on survival, growth and molting cycle during early crablet instar of mud crab, Scylla paramamosain. Thalass Int J Mar Sci. 2020;36:543-51.  https://doi.org/10.1007/s41208-020-00233-9
  44. Thien FY, Hamasaki K, Shapawi R, Kawamura G, de la Cruz-Huervana JJ, Seok Kian Yong A. Effect of background tank color in combination with sand substrate and shelters on survival and growth of Scylla tranquebarica instar. Egypt J Aquat Res. 2022;48:241-6.  https://doi.org/10.1016/j.ejar.2022.04.004
  45. Usman U, Kamaruddin K, Palinggi NN, Laining A. Performa pertumbuhan krablet kepiting bakau, Scylla olivacea, yang diberi pakan dengan dosis berbeda selama periode pendederan. Media Akuakultur. 2016;11:19-26.  https://doi.org/10.15578/jra.11.2.2016.163-170
  46. Vargas-Abundez JA, Lopez-Vazquez HI, Mascaro M, Martinez-Moreno GL, Simoes N. Marine amphipods as a new live prey for ornamental aquaculture: exploring the potential of Parhyale hawaiensis and Elasmopus pectenicrus. PeerJ. 2021;9:e10840. 
  47. Waiho K, Fazhan H, Quinitio ET, Baylon JC, Fujaya Y, Azmie G, et al. Larval rearing of mud crab (Scylla): what lies ahead. Aquaculture. 2018;493:37-50.  https://doi.org/10.1016/j.aquaculture.2018.04.047
  48. Wang M, Jeffs AG. Nutritional composition of potential zooplankton prey of spiny lobster larvae: a review. Rev Aquac. 2014;6:270-99.  https://doi.org/10.1111/raq.12044
  49. Zeng C, Li S. Effects of density and different combinations of diets on survival, development, dry weight and chemical composition of larvae of the mud crab Scylla paramamosain. In: Mud crab Aquaculture and Biology: Proceedings of an International Scientific Forum; 1999; Darwin, Northern Territory, Australia.