DOI QR코드

DOI QR Code

Determining the doses of probiotics for application in Scylla tranquebarica (Fabricius 1798) larvae to produce crablet

  • Gunarto, Gunarto (Research Center for Fisheries, National Research and Innovation Agency) ;
  • Yustian Rovi Alfiansah (Research Center for Applied Microbiology, National Research and Innovation Agency) ;
  • Muliani Muliani (Research Center for Fisheries, National Research and Innovation Agency) ;
  • Bunga Rante Tampangalo (Research Center for Fisheries, National Research and Innovation Agency) ;
  • Herlinah Herlinah (Research Center for Fisheries, National Research and Innovation Agency) ;
  • Nurbaya Nurbaya (Research Center for Fisheries, National Research and Innovation Agency) ;
  • Rosmiati Rosmiati (Research Center for Fisheries, National Research and Innovation Agency)
  • Received : 2023.09.17
  • Accepted : 2023.12.20
  • Published : 2024.03.31

Abstract

Mass mortalities of mud crab Scylla spp. larvae due to pathogenic Vibrio spp. outbreaks have frequently occurred in hatcheries. To overcome this problem, probiotics containing Bacillus subtilis bacteria are applied to inhibit pathogenic ones. We tested different doses of probiotic-containing B. subtilis (108 CFU/g) on the Scylla tranquebarica larvae and investigated the microbiota population, including Vibrio. Water quality, larvae development, and crablet production were also monitored. The recently hatched larvae were grown in twelve conical fiber tanks filled with 200 L sterile seawater, with a salinity of 30 ppt at a stocking density of 80 ind/L. Four different doses of probiotics were applied in the larvae rearing, namely, A = 2.5 mg/L, B = 5 mg/L, C = 7.5 mg/L, and D = 0 mg/L, with three replicates. Next-generation sequencing analysis was used to obtain the abundance of microbes in the whole body of megalopa and the water media for larvae rearing after applying probiotics. Sixteen Raw Deoxyribonucleic Acid samples (eight from a whole body of megalopa extraction from four treatments of probiotics defined as A, B, C, D, and eight from water media extraction from four treatments of probiotic defined as E, F, G, H) were prepared. Then, they were sent to the Genetics Science Laboratory for NGS analysis. Ammonia, nitrite, total organic matter (TOM), larvae, and crablet production were monitored. Based on the Next-generation sequencing analysis data, the Vibrio spp. decreased significantly (p < 0.05) than control test (D) in megalopa-applied probiotics at the doses of 2.5 mg/L (A) and 7.5 mg/L (C) and in the water media for megalopa rearing treated with probiotics at the dosage of 5.0 mg/L (F). Ammonia in the zoea stage in B treatment and TOM in the zoea and megalopa stage in B and C treatments were decreased significantly (p < 0.05). It impacts the higher number of zoea survival in treatments B and C. Finally, it results in a significantly high crablet production in treatments B and C. Therefore, the dosage of 5 mg/L to 7.5 mg/L improves crablet S. tranquebarica production significantly.

Keywords

Acknowledgement

The authors would like to thank the Research Institute for Brackishwater Aquaculture and Fisheries Extension (RIBAFE), the National Research and Innovation Agency, and the Indonesia Endowment Fund for Education (LPDP) of the Ministry of Finance Republic of Indonesia through the RIIM Program Phase 2.

References

  1. Adley CC, Ryan MP, Pembroke JT, Saieb FM. Ralstonia pickettii: biofilm formation in high-purity water. In: McBain AJ, Allison DG, Pratten J, Spratt DA, Upton M, Verran J, editors. Biofilms: persistence and ubiquity. Cardiff: Biofilm Club; 2005. p. 151-62. 
  2. Aftabuddin S, Sikder MNA, Rahman MA, Zafar M. Antibiotic resistance of Vibrio bacteria isolated from mud crab Scylla serrata of Chakoria coast, Bangladesh. Res J Pharm Biol Chem Sci. 2013;4:325-34. 
  3. Alfiansah YR, Hassenruck C, Kunzmann A, Taslihan A, Harder J, Gardes A. Bacterial abundance and community composition in pond water from shrimp aquaculture systems with different stocking densities. Front Microbiol. 2018;9:1-15.  https://doi.org/10.3389/fmicb.2018.00001
  4. Amin M, Pramujisunu Y, Lamid M, Cahyoko Y, Odeyemi OA, Ali M, et al. The fate of probiotic species applied in intensive grow-out ponds in rearing water and intestinal tracts of white shrimp, Litopenaeus vannamei. Open Agric. 2023;8:1-12. 
  5. Ayisi CL, Apraku A, Afriyie G. A review of probiotics, prebiotics, and synbiotics in crab: present research, problems, and future perspective. J Shellfish Res. 2017;36:799-806.  https://doi.org/10.2983/035.036.0329
  6. Bernhard A. The nitrogen cycle: processes, players, and human impact. Nat Educ Knowl. 2010;3:25. 
  7. Buller NB. Bacteria from fish and other aquatic animals: a practical identification manual. Wallingford: CABI; 2004. p. 83-116. 
  8. Buruiana CT, Profir AG, Vizireanu C. Effects of probiotic Bacillus species in aquaculture: an overview. Ann Univ Dunarea Jos Galati Fascicle VI Food Technol. 2014;38:9-17. 
  9. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335-6.  https://doi.org/10.1038/nmeth.f.303
  10. Clesceri L, Greenberg A, Eaton A. Standard methods for the examination of water and wastewater. Washington, DC: American Public Health Association; 2005. 
  11. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792-7.  https://doi.org/10.1093/nar/gkh340
  12. Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996-8.  https://doi.org/10.1038/nmeth.2604
  13. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27:2194-200.  https://doi.org/10.1093/bioinformatics/btr381
  14. Garcia-Medel DI, Angulo C, Escamilla-Montes R, Fierro-Coronado JA, Diarte-Plata G, Gamez-Jimenez C, et al. Bacillus licheniformis BCR 4-3 increases immune response and survival of Litopenaeus vannamei challenged with Vibrio parahaemolyticus IPNGS16. Aquac Int. 2020;28:2303-18.  https://doi.org/10.1007/s10499-020-00585-2
  15. Ghosh AK, Bir J, Azad MAK, Hasanuzzaman AFM, Islam MS, Huq KA. Impact of commercial probiotics application on growth and production of giant freshwater prawn (Macrobrachium rosenbergii De Man, 1879). Aquac Rep. 2016;4:112-7.  https://doi.org/10.1016/j.aqrep.2016.08.001
  16. Gunarto, Herlinah. Level of crablet production in mangrove crab Scylla paramamosain with feeding enrichment using Hufa and vitamin C on larvae stages. J Ilmu Teknol Kelaut Trop. 2015;7:511-20.  https://doi.org/10.28930/jitkt.v7i2.10997
  17. Gunarto, Sulaeman, Herlinah. The effect of limb-removing and placement-depth on the growth rate of mud crab juvenile, Scylla tranquebarica. IOP Conf Ser Earth Environ Sci. 2020;521:1-11.  https://doi.org/10.1088/1755-1315/521/1/012027
  18. Gunarto, Tampangalo BR, Muliani. The application of erythromycin, elbayou, and Rica-1 probiotic in the rearing of Scylla paramamosain mud crab larvae development into the crablet stage. Thalass Int J Mar Sci. 2021;37:465-75.  https://doi.org/10.1007/s41208-021-00327-y
  19. Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G, et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 2011;21:494-504.  https://doi.org/10.1101/gr.112730.110
  20. Hjelmso MH, Hansen LH, Baelum J, Feld L, Holben WE, Jacobsen CS. High-resolution melt analysis for rapid comparison of bacterial community compositions. Appl Environ Microbiol. 2014;80:3568-75.  https://doi.org/10.1128/AEM.03923-13
  21. Hlordzi V, Kuebutornye FKA, Afriyie G, Abarike ED, Lu Y, Chi S, et al. The use of Bacillus species in maintenance of water quality in aquaculture: a review. Aquac Rep. 2020;18:1-12.  https://doi.org/10.1016/j.aqrep.2020.100503
  22. Kavitha M, Raja M, Perumal P. Evaluation of probiotic potential of Bacillus spp. isolated from the digestive tract of freshwater fish Labeo calbasu (Hamilton, 1822). Aquac Rep. 2018;11:59-69.  https://doi.org/10.1016/j.aqrep.2018.07.001
  23. Kotani T. Enrichment of rotifers and its effect on the growth and survival of fish larvae. In: Hagiwara A, Yoshinaga T, editors. Rotifers: aquaculture, ecology, gerontology, and ecotoxicology. Singapore: Springer; 2017. p. 47-62. 
  24. Kuebutornye FKA, Abarike ED, Lu Y. A review on the application of Bacillus as probiotics in aquaculture. Fish Shellfish Immunol. 2019;87:820-8.  https://doi.org/10.1016/j.fsi.2019.02.010
  25. Li LT, Yan BL, Li SH, Xu JT, An XH. A comparison of bacterial community structure in seawater pond with shrimp, crab, and shellfish cultures and in non-cultured pond in Ganyu, Eastern China. Ann Microbiol. 2016;66:317-28.  https://doi.org/10.1007/s13213-015-1111-4
  26. Liu T, He X, Jia G, Xu J, Quan X, You S. Simultaneous nitrification and denitrification process using novel surface-modified suspended carriers for the treatment of real domestic wastewater. Chemosphere. 2020;125831. 
  27. Liu Y, Kyle S, Straight PD. Antibiotic stimulation of a Bacillus subtilis migratory response. mSphere. 2018;3:e00586-17. 
  28. Machado MD, Soares EV. Impact of erythromycin on a non-target organism: cellular effects on the freshwater microalga Pseudokirchneriella subcapitata. Aquat Toxicol. 2019;208:179-86.  https://doi.org/10.1016/j.aquatox.2019.01.014
  29. Magoc T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27:2957-63.  https://doi.org/10.1093/bioinformatics/btr507
  30. Martinez-Cordova LR, Emerenciano M, Miranda-Baeza A, Martinez-Porchas M. Microbial-based systems for aquaculture of fish and shrimp: an updated review. Rev Aquac. 2015;7:131-48.  https://doi.org/10.1111/raq.12058
  31. Mohapatra S, Chakraborty T, Kumar V, DeBoeck G, Mohanta KN. Aquaculture and stress management: a review of probiotic intervention. J Anim Physiol Anim Nutr. 2013;97:405-30.  https://doi.org/10.1111/j.1439-0396.2012.01301.x
  32. Neil LL, Fotedar R, Shelley CC. Effects of acute and chronic toxicity of unionized ammonia on mud crab, Scylla serrata (Forsskal, 1755) larvae. Aquac Res. 2005;36:927-32.  https://doi.org/10.1111/j.1365-2109.2005.01304.x
  33. Nogami K, Maeda M. Bacteria as biocontrol agents for rearing larvae of the crab Portunus trituberculatus. Can J Fish Aquat Sci. 1992;49:2373-6.  https://doi.org/10.1139/f92-261
  34. Olmos J. Bacillus subtilis a potential probiotic bacterium to formulate functional feeds for aquaculture. J Microb Biochem Technol. 2014;6:361-5.  https://doi.org/10.4172/1948-5948.1000169
  35. Padmavathi P, Sunitha K, Veeraiah K. Efficacy of probiotics in improving water quality and bacterial flora in fish ponds. Afr J Microbiol Res. 2012;6:7471-8.  https://doi.org/10.5897/AJMR12.496
  36. Patangia DV, Anthony Ryan C, Dempsey E, Paul Ross R, Stanton C. Impact of antibiotics on the human microbiome and consequences for host health. MicrobiologyOpen. 2022;11:e1260. 
  37. Poornima M, Singaravel R, Rajan JJS, Sivakumar S, Ramakrishnan S, Alavandi SV, et al. Vibrio harveyi infection in mud crabs (Scylla tranquebarica) infected with white spot syndrome virus. Int J Res Biol Sci. 2012;2:1-5. 
  38. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590-6.  https://doi.org/10.1093/nar/gks1219
  39. Romo-Barrera CM, Castrillon-Rivera LE, Palma-Ramos A, Castaneda-Sanchez JI, Luna-Herrera J. Bacillus licheniformis and Bacillus subtilis, probiotics that induce the formation of macrophage extracellular traps. Microorganisms. 2021;9:2027. 
  40. Sahandi J, Sorgeloos P, Xiao H, Wang X, Qi Z, Zheng Y, et al. The use of selected bacteria and yeasts to control Vibrio spp. in live food. Antibiotics. 2019;8:95. 
  41. Seneriches-Abiera ML, Parado-Estepa F, Gonzales GA. Acute toxicity of nitrite to mud crab Scylla serrata (Forsskal) larvae. Aquac Res. 2007;38:1495-9.  https://doi.org/10.1111/j.1365-2109.2007.01794.x
  42. Soltani M, Ghosh K, Hoseinifar SH, Kumar V, Lymbery AJ, Roy S, et al. Genus Bacillus, promising probiotics in aquaculture: aquatic animal origin, bio-active components, bioremediation and efficacy in fish and shellfish. Rev Fish Sci Aquac. 2019;27:331-79.  https://doi.org/10.1080/23308249.2019.1597010
  43. Stein T. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol. 2005;56:845-57.  https://doi.org/10.1111/j.1365-2958.2005.04587.x
  44. Sudha A, Saravana Bhavan P, Manjula T, Kalpana R, Karthik M. Bacillus licheniformis as a probiotic bacterium for culture of the prawn Macrobrachium rosenbergii. Res J Life Sci Bioin-form Pharm Chem Sci. 2019;5:44-61. 
  45. Sun Y, Zhou L, Fang L, Su Y, Zhu W. Responses in colonic microbial community and gene expression of pigs to a longterm high resistant starch diet. Front Microbiol. 2015;6:1-10.  https://doi.org/10.3389/fmicb.2015.00877
  46. Susianingsih E, Muliani, Nurhidayah, Kadriah IAK, Atmomarsono M. Use of probiotics, mangrove leaf extract, and bacterin for alternative disease prevention in tiger shrimp culture. IOP Conf Ser Earth Environ Sci. 2022;1119:012062. 
  47. Syafaat MN, Gunarto, Sulaeman, Herlinah, Ma H, Ikhwanuddin M. Effects of different feeding regimes on larvae and crablets of purple mud crab, Scylla tranquebarica (Fabricius, 1798). Aquac Rep. 2019;15:1-7.  https://doi.org/10.1016/j.aqrep.2019.100231
  48. Talib A, Onn KK, Chowdury MA, Din WMW, Yahya K. The beneficial effects of multispecies Bacillus as probiotics in enhancing culture performance for mud crab Scylla paramamosain larval culture. Aquac Int. 2017;25:849-66.  https://doi.org/10.1007/s10499-016-0070-5
  49. Vaseeharan B, Ramasamy P. Control of pathogenic Vibrio spp. by Bacillus subtilis BT23, a possible probiotic treatment for black tiger shrimp Penaeus monodon. Lett Appl Microbiol. 2003;36:83-7.  https://doi.org/10.1046/j.1472-765X.2003.01255.x
  50. Waiho K, Fazhan H, Quinitio ET, Baylon JC, Fujaya Y, Azmie G, et al. Larval rearing of mud crab (Scylla): what lies ahead. Aquaculture. 2018;493:37-50.  https://doi.org/10.1016/j.aquaculture.2018.04.047
  51. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261-7.  https://doi.org/10.1128/AEM.00062-07
  52. Wu HJ, Sun LB, Li CB, Li ZZ, Zhang Z, Wen XB, et al. Enhancement of the immune response and protection against Vibrio parahaemolyticus by indigenous probiotic Bacillus strains in mud crab (Scylla paramamosain). Fish Shellfish Immunol. 2014;41:156-62.  https://doi.org/10.1016/j.fsi.2014.08.027
  53. Yilmaz S, Yilmaz E, Dawood MAO, Ringo E, Ahmadifar E, Abdel-Latif HMR. Probiotics, prebiotics, and synbiotics used to control vibriosis in fish: a review. Aquaculture. 2022;547:737514. 
  54. Zhang X, Zhang M, Zheng H, Ye H, Zhang X, Li S. Source of hemolymph microbiota and their roles in the immune system of mud crab. Dev Comp Immunol. 2020;102:103470. 
  55. Zhou J, Fang W, Yang X, Zhou S, Hu L, Li X, et al. A nonluminescent and highly virulent Vibrio harveyi strain is associated with "bacterial white tail disease" of Litopenaeus vannamei shrimp. PLOS ONE. 2012;7:e29961. 
  56. Zokaeifar H, Balcazar JL, Saad CR, Kamarudin MS, Sijam K, Arshad A, et al. Effects of Bacillus subtilis on the growth performance, digestive enzymes, immune gene expression and disease resistance of white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol. 2012;33:683-9.  https://doi.org/10.1016/j.fsi.2012.05.027
  57. Zorriehzahra MJ, Delshad ST, Adel M, Tiwari R, Karthik K, Dhama K, et al. Probiotics as beneficial microbes in aquaculture: an update on their multiple modes of action: a review. Vet Q. 2016;36:228-41. https://doi.org/10.1080/01652176.2016.1172132