DOI QR코드

DOI QR Code

수소 폭발위험범위에 대한 IEC기준과 시뮬레이션 결과의 비교분석

Comparative Analysis of IEC Standard and Simulation Results for Hydrogen Hazardous Distance

  • 안승효 (전남대학교 화학공학과) ;
  • 김은희 (전남대학교 화학공학과) ;
  • 이선희 (전남대학교 화학공학과) ;
  • 마병철 (전남대학교 화학공학과)
  • Seung-Hyo An (Dept. of Chemical Engineering, Cheonnam National University) ;
  • Eun-Hee Kim (Dept. of Chemical Engineering, Cheonnam National University) ;
  • Seon-Hee Lee (Dept. of Chemical Engineering, Cheonnam National University) ;
  • Byung-Chol Ma (Dept. of Chemical Engineering, Cheonnam National University)
  • 투고 : 2023.09.05
  • 심사 : 2024.01.18
  • 발행 : 2024.03.31

초록

수소 등 인화성 가스를 취급하는 사업장은 KS C IEC 60079-10-1 기준에 따라 취급시설 주변을 폭발위험장소로 구분하여 관리하여야 한다. 그렇지만 동 기준은 가스의 종류, 실내·외 여부, 대기조건 등의 구분없이 누출특성값을 기준으로 폭발위험범위를 산정하므로 실효성 등에 대한 의문이 제기되고 있다. 본 연구에서는 수소를 대상으로 누출특성과 실외대기 조건에서 시뮬레이션(PHAST 및 HyRAM)을 통해 폭발위험범위를 도출하고 IEC 기준의 log-log 그래프에서 비교하였으며, 각 결과에 대한 회귀분석을 수행하였다. 그 결과, 각 조건에서 시뮬레이션 결과가 IEC 기준보다 0.6~3.8배 이상 적게 나타났으며, 동일한 누출특성값에서 풍속 및 대기안정도에 따라 폭발위험범위가 상이한 것을 확인할 수 있었다. 또한, 간편하게 사용할 수 있는 누출특성과 폭발위험범위에 대한 선형회귀식을 도출하였다. 따라서, 수소 취급 사업장 등에서 폭발위험범위 산정 시 본 연구에서 제시한 그래프와 선형회귀식을 통하여 IEC 기준과 시뮬레이션 결과를 용이하게 비교 및 활용할 수 있을 것으로 판단된다. 이를 적용할 경우 합리적인 폭발위험장소 구분이 가능하여 경제적인 부담을 최소화할 수 있을 것으로 기대되며, 수소 폭발 등의 위험성을 크게 감소시킬 수 있을 것으로 전망한다.

In workplaces handling flammable gas such as hydrogen, hazardous area is determined through KS C IEC 60079-10-1 standard. Because this standard determines the hazardous distance based on the release characteristic regardless of the type of gas, indoor/outdoor conditions, and atmospheric conditions, concerns are being raised about the effectiveness. In this study, simulations (PHAST, HyRAM) were performed to calculate the hazardous distance for hydrogen under various release characteristics and atmospheric conditions, and compared these results to IEC standard log-log graph. Also, we performed regression analysis according to each result. we found that the simulation results were 0.6 to 3.8 times less than the IEC standard, presented convenient linear regression equations. In addition, We confirmed that the results of hazardous distance varied based on wind velocity and atmospheric stability at the same release characteristic. In addition, we derived linear regression equations for release characteristics and hazardous distance that can be conveniently utilized. So, when classifying hazardous area in workplaces where they handle the hydrogen, the integrated graph and linear regression equation are helpful for confirming the hazardous area. Moreover, it is expected that the economic burden will be minimized by being able to classify reasonable hazardous area and to greatly reduce the risk of hydrogen explosion.

키워드

과제정보

이 연구는 2023년도 환경부(한국화학물질관리협회)의 재원으로 화학물질 안전관리 특성화대학원 사업의 지원을 받아 수행된 연구입니다.

참고문헌

  1. KS C IEC 60079-10-1 : "Explosive atmospheres Part 10-1 : Classification of Areas - Explosive Gas Atmospheres", Korean Industrial Standards, (2017)
  2. M. S. Seo, K. S. Kim, Y. W. Hwang, Y. W. Chon, "A Study on Determination of Range of Hazardous Area Caused by the Secondary Grade of Release of Vapor Substances Considering Material Characteristic and Operating Condition", Journal of the Korean Institute of Gas, 22(4), 13-26, (2018)
  3. D. Y. Kim, Y. W. Chon, I. M. Lee, Y. W. Hwang, "A Study on the Improvement of Classification of Explosion Hazardous Area using Hypothetic Volume through Release Characteristic", Journal of the Korea safety management & science, 19(2), 31-40, (2017)
  4. N. S. Kim, J. G. Lim, I. S. Woo, "A Study on the Examination of Explosion Hazardous Area Applying Ventilation and Dilution", Journal of the Korean Institute of Gas, 22(4), 27-31, (2018) https://doi.org/10.11637/kjpa.2018.31.1.27
  5. J. Y. Choi, S. H. Byeon, "A Study on Complementary Method for Hazardous Area Extent by IEC 60079-10-1 Edition 2.0", Journal of the Korea safety management & science, 22(2), 73-82, (2020)
  6. J. H. Kim, M. K. Lee, "A Comparison on Detected Concentrations of LPG Leakage Distribution through Actual Gas Release, CFD (FLACS) and Calculation of Hazardous Areas", Journal of Industrial and Engineering Chemistry, 32(1), (2021)
  7. P. R. Cho, H. J. Lee, J. B. Baek, "A Study on the Negligible Extent(NE) and Release Characteristic of KS C IEC 60079-10-1(2015) Standard", Journal of the Korean Society of Safety, 35(2), 111-117, (2020)
  8. Paloma L. Barros, Aurelio M. Luiz, Claudemi A. Nascimento, Antonio T.P. Neto, Jose J.N. Alves, "On the non-monotonic wind influence on flammable gas cloud from CFD simulations for hazardous area classification", Journal of Loss Prevention in the Process Industries, 68, 104278, (2020)
  9. Y. J. Kwon, D. J. Kim, "The Effect of the Change of Wind Velocity on the Classification of Explosion Hazardous Area", Korean Journal of Hazardous Materials, 6(2), 62-67, (2018) https://doi.org/10.31333/kihm.2018.6.2.62
  10. Fuyuan Yang, Tianze Wang, Xintao Deng, Jian Dang, Zhaoyuan Huang, Song Hu, Yangyang Li, Minggao Ouyang, "Review on hydrogen safety issues: Incident statistics, hydrogen diffusion, and detonation process", International Journal of Hydrogen Energy, 46(61), 31467-31488, (2021) https://doi.org/10.1016/j.ijhydene.2021.07.005
  11. "KOSHA GUIDE P-107-2020", Korea Occupational Safety and Health Agency, (2020)
  12. Javad Mousavi, Mehdi Parvini, "Analyzing effective factors on leakage-induced hydrogen fires", Journal of Loss Prevention in the Process Industries, 40, 29-42, (2016) https://doi.org/10.1016/j.jlp.2015.12.002
  13. Y. J. Jung, C. J. Lee, "A Study on Gas Explosion Hazardous Ranges for International Electrotechnical Commission Technical Standards", Journal of the Korean Society of Safety, 33(3), 39-45, (2018)
  14. D. H. Kwon, S. K. Choi, S. K. Kang, C. H. Yu, " The Analysis on Quantitative Risk Assessment of the Package Type H2 Station using Hy-KoRAM and PHAST/SAFETI", Journal of Energy Engineering, 29(4), 16-25, (2020) https://doi.org/10.5855/ENERGY.2020.29.4.016
  15. B. J. Park, Y. K. Kim, S. W. Paik, C. K. Kang, "Numerical and experimental analysis of jet release and jet flame length for qualitative risk analyis at hydrogen refueling station ", Journal of the Process Safety and Environmental Protection, 155, 145-154, (2021) https://doi.org/10.1016/j.psep.2021.09.016
  16. PHAST v8.6 User's Mannual, DNV, 2021.
  17. Lin Xie, Yangyiming Rong, Jianye Chen, Fang Yuan, Rui Long, "Impacts of wind conditions on hydrogen leakage during refilling hydrogen-powered vehicles", Journal of the Energy Storage and Saving, 2(2), 449-458, (2023) https://doi.org/10.1016/j.enss.2023.03.001
  18. Nishant Pandya, Nadine Gabas, Eric Marsden, "Sensitivity analysis of Phast's atmospheric dispersion model for three toxic materials (nitric oxide, ammonia, chlorine)", Journal of Loss Prevention in the Process Industries, 25(1), 20-32, (2012) https://doi.org/10.1016/j.jlp.2011.06.015
  19. D.Y.Pyo, O.T.Lim, "A Study on Explosive Hazardous Areas in Hydrogen Handling Facility", Journal of Transactions of the Korean hydrogen and new energy society, 30(1), 29-34, (2019)