DOI QR코드

DOI QR Code

Assessing the Applicability of Hysteresis Indices for the Interpretation of Suspended Sediment Dynamics in a Forested Catchment

산림유역의 부유토사 동태 해석을 위한 이력현상 지수의 적용성 평가

  • Ki-Dae Kim (Dept. Forestry and Environmental System, Kangwon National Univ.) ;
  • Su-Jin Jang (Landslide Div., National Inst. of Forest Science) ;
  • Soo-Youn Nam (Livable Urban Forests Research Center, National Inst. of Forest Science) ;
  • Jae-Uk Lee (Dept. Forestry and Environmental System, Kangwon National Univ.) ;
  • Suk-Woo Kim (Div. of Forest Science, Kangwon National Univ.)
  • 김기대 (강원대학교 대학원 산림환경시스템학과 ) ;
  • 장수진 (국립산림과학원 산사태연구과) ;
  • 남수연 (국립산림과학원 생활권도시숲연구센터) ;
  • 이재욱 (강원대학교 대학원 산림환경시스템학과) ;
  • 김석우 (강원대학교 산림과학부 )
  • Received : 2023.11.22
  • Accepted : 2024.02.06
  • Published : 2024.04.30

Abstract

The dynamics of suspended sediment (SS) in forested catchments vary depending upon human or natural disturbances, including land use change, forestry activity, forest fires, and landslides. Understanding the dynamics of SS originating from the potential sources within a forested catchment is crucial for establishing an effective water quality management strategy. Therefore, to suggest a systematic method for interpreting SS dynamics, we evaluated the performance and applicability of ten methods for calculating the hysteresis index based on observed hydrological data and two calculation models (Lawler's method and Lloyd's method) with five sampling intervals (50th, 25th, 10th, 5th, and 1st percentiles). Our results showed that Lloyd's method, which used a sampling interval at the 1st percentile, had the largest number of analyzable runoff events and exhibited the best performance. The results of this study can contribute to quantifying the hysteresis in the relationship between discharge and SS and provide useful information for interpreting SS dynamics.

산림유역의 부유토사 동태는 토지이용 변화, 산림사업, 산불, 산사태 등의 인위적 또는 자연적 교란에 따라서 다변화될 수 있다. 이러한 측면에서 산림유역의 부유토사 동태를 이해하는 것은 효과적인 수질 관리 대책을 수립하는 데에 중요하다. 이 연구는 부유토사 동태를 해석하기 위한 체계적인 조사 방법을 제안하고자 관측된 유출량-탁도 자료를 토대로 2가지의 이력현상 지수 산정 방법(Lawler의 방법과 Lloyd의 방법)과 5가지 추출 간격(50, 25, 10, 5, 1 퍼센타일)을 고려한 10개 산정기법의 적용성과 성능을 평가하였다. 그 결과, 1 퍼센타일의 추출 간격을 활용한 Lloyd의 방법이 분석 가능한 유출 사상이 가장 많았으며, 성능 역시 가장 뛰어난 것으로 확인되었다. 이 연구의 결과는 이력현상 지수를 활용함으로써 유출량과 부유토사의 이력현상을 정량화할 수 있을 뿐만 아니라 부유토사 동태를 해석하는 데에 유용한 정보를 제공할 수 있음을 시사한다.

Keywords

Acknowledgement

이 연구는 환경부 "표토보전관리기술개발사업(2019002830002)" 및 산림청(한국임업진흥원)에서 지원하는 연구비(2021342B10-2323-CD01)에 의하여 수행되었음.

References

  1. Ahn, Y.S., H.D. Cho, K.I. Oh, J.K. Chai and K.W. Chun(2003) Effect of the forest road on the variation of suspended sediment in the small forest watershed. Journal of Korean Society of Forest Science 92(1): 19-26. (in Korean with English abstract)
  2. Aich, V., A. Zimmermann and H. Elsenbeer(2014) Quantification and interpretation of suspended-sediment discharge hysteresis patterns: How much data do we need? Catena 122: 120-129. https://doi.org/10.1016/j.catena.2014.06.020
  3. Alavez-Vargas, M., C. Birkel, A. Corona and J.A. Brena-Naranjo (2021) Land cover change induced sediment transport behaviour in a large tropical Mexican catchment. Hydrological Sciences Journal 66(6): 1069-1082. https://doi.org/10.1080/02626667.2021.1903472
  4. Blaen, P.J., K. Khamis, C.E.M. Lloyd, C. Bradley, D. Hannah and S. Krause(2016) Real-time monitoring of nutrients and dissolved organic matter in rivers: Capturing event dynamics, technological opportunities and future directions. Science of the Total Environment 569: 647-660.
  5. Bryan, R.B.(2000) Soil erodibility and processes of water erosion on hillslope. Geomorphology 32(3-4): 385-415. https://doi.org/10.1016/S0169-555X(99)00105-1
  6. Cao, L., S. Liu, S. Wang, Q. Cheng, A.E. Fryar, L. Zhang, Z. Zhang, F. Yue and T. Peng(2021) Factors controlling discharge-suspended sediment hysteresis in karst basins, southwest China: Implications for sediment management. Journal of Hydrology 594: 125792.
  7. Chhetri, A., R.B. Kayastha and A. Shrestha(2016) Assessment of sediment load of Langtang River in Rasuwa District, Nepal. Journal of Water Resource and Protection 8(1): 84-92. https://doi.org/10.4236/jwarp.2016.81007
  8. Chun, K.W., M.S. Kim and T. Ezaki(1996) Effects of forest road construction on stream water qualities(I) -The variation of suspended sediment by forest road construction-. Journal of Korean Society of Forest Science 85(2): 280-287. (in Korean with English abstract)
  9. Ellison, W.D.(1945) Some effects of raindrops and surface-flow on soil erosion and infiltration. Eos, Transactions American Geophysical Union 26(3): 415-429. https://doi.org/10.1029/TR026i003p00415
  10. Evans, C. and T.D. Davies(1998) Causes of concentration/discharge hysteresis and its potential as a tool for analysis of episode hydrochemistry. Water Resources Research 34(1): 129-137. https://doi.org/10.1029/97WR01881
  11. Gellis, A.C.(2013) Factors influencing storm-generated suspended-sediment concentrations and loads in four basins of contrasting land use, humid-tropical Puerto Rico. Catena 104: 39-57. https://doi.org/10.1016/j.catena.2012.10.018
  12. Gomi, T., R.C. Sidle and J.S. Richardson(2002) Understanding processes and downstream linkages of headwater systems. Bioscience 52(10): 905-916. https://doi.org/10.1641/0006-3568(2002)052[0905:UPADLO]2.0.CO;2
  13. Haddadchi, A. and M. Hicks(2021) Interpreting event-based suspended sediment concentration and flow hysteresis patterns. Journal of Soils and Sediments 21: 592-612. https://doi.org/10.1007/s11368-020-02777-y
  14. Hewlett, J.D. and A.R. Hibbert(1967) Factors affecting the response of small watersheds to precipitation in humid areas. In: Sopper, W.E. and H.W. Lull(Eds.), Forest Hydrology, Pergamon Press, New York, pp. 275-290.
  15. Hughes, A.O., J.M. Quinn and L.A. McKergow(2012) Land use influences on suspended sediment yields and event sediment dynamics within two headwater catchments, Waikato, New Zealand. New Zealand Journal of Marine and Freshwater Research 46(3): 315-333. https://doi.org/10.1080/00288330.2012.661745
  16. Jun, J.H., K.H. Kim, J.Y. Yoo, H.T. Choi and Y.H. Jeong(2007) Variation of suspended solid concentration, electrical conductivity and pH of stream water in the regrowth and rehabilitation forested catchments, South Korea. Journal of Korean Society of Forest Science 96(1): 21-28. (in Korean with English abstract)
  17. Kim, J.H., H.T. Choi and H.G. Lim(2015) Analysis of suspended solid generation with rainfall-runoff events in a small forest watershed. Journal of Environmental Science International 24(12): 1617-1627. (in Korean with English abstract) https://doi.org/10.5322/JESI.2015.24.12.1617
  18. Kim, J.K., D.Y. Yang, J.Y. Kim and J.K. Park(2004) Suspended sediment yields related to discharge-turbidity in small mountainous catchment. Journal of the Geomorphological Association of Korea 11(3): 25-36. (in Korean with English abstract)
  19. Kim, K.J. and K.W. Chun(1994) A study on change of suspended solids by forest road construction(I) -Parallel watersheds method-. Journal of Forest Science 10(1): 57-65. (in Korean with English abstract)
  20. Kim, S.S., J.S. Kim, K.Y. Bang, E.M. Gwon and W.J. Chung(2002) The estimation of the unit load and characteristics of non-point source discharge according to rainfall in Kyongan watershed. Journal of Korean Society of Environmental Engineers 24(11): 2019-2027. (in Korean with English abstract)
  21. Kubota, T., K. Hamada, T. Hitomi and M. Shin(2016) Remote observation of turbidity and estimation of concentrations of suspended solids, total phosphorus and radioactive Cs in irrigation facilities. Technical report of the National Institute for Rural Engineering 218: 77-88. (in Japanese with English abstract)
  22. Lal, R.(2001) Soil degradation by erosion. Land Degradation & Development 12(6): 519-539. https://doi.org/10.1002/ldr.472
  23. Langlois, J.L., D.W. Johnson and G.R. Mehuys(2005) Suspended sediment dynamics associated with snowmelt runoff in a small mountain stream of Lake Tahoe (Nevada). Hydrological Processes 19(18): 3569-3580.
  24. Lawler, D.M., G.E. Petts, I.D.L. Foster and S. Harper(2006) Turbidity dynamics during spring storm events in an urban headwater river system: The Upper Tame, West Midlands, UK. Science of the Total Environment 360(1-3): 109-126. https://doi.org/10.1016/j.scitotenv.2005.08.032
  25. Lee, K.H., C.W. Lee and S. Eu(2022) Temporal trend in landslide occurrences in post-fire areas over the past two decades. Journal of the Korean Society Hazard Mitigation 22(4): 47-55. (in Korean with English abstract)
  26. Lee, S.G.(2003) Effect of forest road establishment based on forest management on occurrence of suspended sediment. Journal of the Environmental Sciences 12(3): 247-255. (in Korean with English abstract) https://doi.org/10.5322/JES.2003.12.3.247
  27. Lee, Y.S.(2019) Study on the hand gesture recognition system and algorithm based on millimeter wave radar. The Journal of Korea Institute of Information, Electronics, and Communication Technology 12(3): 251-256. (in Korean with English abstract)
  28. Leopold, L.B. and T. Maddock(1953) The hydraulic geometry of stream channels and some physiographic implications (Professional Paper 252). US Geological Survey, U.S. Government Printing Office, U.S.A., 57pp.
  29. Lloyd, C.E.M., J.E. Freer, P.J. Johnes and A.L. Collins(2016a) Testing an improved index for analysing storm discharge-concentration hysteresis. Hydrology and Earth System Sciences 20(2): 625-632. https://doi.org/10.5194/hess-20-625-2016
  30. Lloyd, C.E.M., J.E. Freer, P.J. Johnes and A.L. Collins(2016b) Using hysteresis analysis of high-resolution water quality monitoring data, including uncertainty, to infer controls on nutrient and sediment transfer in catchments. Science of the Total Environment 543: 388-404. https://doi.org/10.1016/j.scitotenv.2015.11.028
  31. Ma, H.S., W.S. Kang and E.M. Kang(2012) Influences of forest environmental factors on turbidity of stream water. Journal of Korean Society of Forest Science 101(4): 574-578. (in Korean with English abstract)
  32. Madrid, Y. and Z.P. Zayas(2007) Water sampling: Traditional methods and new approaches in water sampling strategy. TrAC Trends in Analytical Chemistry 26(4): 293-299. https://doi.org/10.1016/j.trac.2007.01.002
  33. Malutta, S., M. Kobiyama, P.L.B. Chaffe and N.B. Bonuma(2020) Hysteresis analysis to quantify and qualify the sediment dynamics: State of the art. Water Science and Technology 81(12): 2471-2487. https://doi.org/10.2166/wst.2020.279
  34. Marttila, H. and B. Klove(2012) Use of Turbidity measurements to estimate suspended solids and nutrient loads from peatland forestry drainage. Journal of Irrigation and Drainage Engineering 138(12): 1088-1096. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000509
  35. McBean, E.A. and S. Al-Nasaari(1988) Uncertainty in suspended sediment transport curves. Journal of Hydraulic Engineering 114(1): 63-74. https://doi.org/10.1061/(ASCE)0733-9429(1988)114:1(63)
  36. Misset, C., A. Recking, C. Legout, A. Poirel, M. Cazilhac, M. Esteves and M. Bertrand(2019) An attempt to link suspended load hysteresis patterns and sediment sources configuration in alpine catchments. Journal of Hydrology 576: 72-84. https://doi.org/10.1016/j.jhydrol.2019.06.039
  37. Rodriguez-Blanco, M.L., M.T. Taboada-Castro and M.M. Taboada-Castro(2023) Improving the understanding of N transport in a rural catchment under Atlantic climate conditions from the analysis of the concentration-discharge relationship derived from a high-frequency data set. Hydrology and Earth System Sciences 27(6): 1243-1259. https://doi.org/10.5194/hess-27-1243-2023
  38. Sakai, K., A. Yoshinaga, M. Shimada and K. Onaga(2000) The characteristics of suspended sediment runoff in Okinawa studied from the relations between water discharge and suspended sediment concentration. Transactions of The Japanese Society of Irrigation, Drainage and Reclamation Engineering 208: 589-596. (in Japanese with English abstract)
  39. Shiraki, K., Y. Kanzawa, T. Kudou, K. Kakaoka, Ujimuse and Y. Uchiyama(2020) Effects of simple cable yarding on suspended soil outflow and runoff amounts at a mountainous forested watershed. Journal of Japan Society of Hydrology and Water Resources 33(2): 47-55. (in Japanese with English abstract)
  40. Tamai, K., T. Shimizu, S. Iida, T. Nobuhiro, S. Sawano and Y. Tsuboyama(2013) Comparison of the calculated discharge volume with digital and analog records. Proceedings of the 124th Annual Japanese Forest Society Meeting, The Japanese Forest Society, Morioka, pp. 1-179. (in Japanese)
  41. Vale, S.S. and J.R. Dymond(2019) Interpreting nested storm event suspended sediment-discharge hysteresis relationships at large catchment scales. Hydrological Processes 34(2): 420-440. https://doi.org/10.1002/hyp.13595
  42. Valente, M.L., J.M. Reichert, R.B.L. Cavalcante, J.P.G. Minella, O. Evrard and R. Srinivasan(2021) Afforestation of degraded grasslands reduces sediment transport and may contribute to streamflow regulation in small catchments in the short-run. Catena 204: 105371.
  43. Vercruysse, K., R.C. Grabowski, T. Hess and I. Lexartza-Artza(2020) Linking temporal scales of suspended sediment transport in rivers: Towards improving transferability of prediction. Journal of Soils and Sediments 20: 4144-4159. https://doi.org/10.1007/s11368-020-02673-5
  44. Williams, G.P.(1989) Sediment concentration versus water discharge during single hydrologic events in rivers. Journal of Hydrology 111(1-4): 89-106. https://doi.org/10.1016/0022-1694(89)90254-0
  45. Wymore, A.S., M.C. Leon, J.B. Shanley and W.H. McDowell (2019) Hysteretic response of solutes and turbidity at the event scale across forested tropical montane watersheds. Frontiers in Earth Science 7: 126.
  46. Yang, Y., M. Safeeq, J.W. Wagenbrenner, A.A. Berhe and S.C. Hart(2022) Impacts of climate and forest management on suspended sediment source and transport in montane headwater catchments. Hydrological Processes 36(9): e14684.
  47. Yeshaneh, E., A. Eder and G. Bloschl(2014) Temporal variation of suspended sediment transport in the Koga catchment, North Western Ethiopia and environmental implications. Hydrological Processes 28(24): 5972-5984.
  48. Yun, J.Y.(2014) Characteristics of hydrology and suspended sediment transport in the Simjeok forested Wetland. M.S. Dissertation, Kangwon National Univ., Chuncheon, 39pp. (in Korean with English abstract)
  49. Zarnaghsh, A. and A. Husic(2021) Degree of anthropogenic land disturbance controls fluvial sediment hysteresis. Environmental Science & Technology 55(20): 13737-13748. https://doi.org/10.1021/acs.est.1c00740
  50. Zhang, T., D. Li, A.J. Kettner, Y. Zhou and X. Lu(2021) Constraining dynamic sediment-discharge relationships in cold environments: The sediment-availability-transport (SAT) model. Water Resources Research 57(10): e2021WR030690.
  51. Zhu, M., X. Yu, Z. Li, X. Xu and Z. Ye(2023) Quantifying and interpreting the hysteresis patterns of monthly sediment concentration and water discharge in karst watersheds. Journal of Hydrology 618: 129179.
  52. Zuecco, G., D.P.M. Borga and H.J. van Meerveld(2015) A versatile index to characterize hysteresis between hydrological variables at the runoff event timescale. Hydrological Processes 30(9): 1449-1466.