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CHOOSER OPTIONS ON VARIOUS UNDERLYING OPTIONS

Wonjoong Kim and Jinyoung Lee

Abstract. We consider chooser options written on various underlying

assets other than vanilla call and put options. Specifically, we deal with

(i) the chooser option written on the power call and put options, and (ii)
the chooser option written on the exchange options. We provide explicit

formulas for the prices of these chooser options whose underlying assets
are either power options or exchange options, rather than the vanilla call

and put options.

1. Introduction

Financial derivatives have become essential tools for investors and traders in
modern financial markets, offering effective risk management, volatility hedg-
ing, and exposure to diverse asset classes.

Among the various types of derivatives, chooser options hold significant im-
portance. Chooser options, also referred to as “you-choose” or “as-you-like”
options, allow holders to exercise their right to determine, at a predetermined
future date before the option’s maturity, whether the option should be a call
or a put. This date is commonly known as the choice date. Evaluating the
expected payoff of a call option against that of a put option, the holder decides
the option type based on the price movement from the present to the choice
date. If the call and put options possess identical strike prices and maturities,
they are classified as standard, simple, or regular chooser options. Conversely,
if they differ, they are categorized as complex chooser options (Zhang [12]; Hull
[4]; Whaley [11]; Rubinstein and Reiner [9]).

Chooser options emerged in the late 1980s, attracting the attention of re-
searchers. Rubinstein [8,9] provided good explanations about chooser options.
In Rubinstein’s formula, a nonlinear equation has to be solved numerically
using the iteration method. Buchen [2] introduced a new pricing technique
utilizing the partial differential equation for a class of exotic options, such as
chooser options, which involve two expiry dates.
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The solutions for chooser options under deterministic interest rates on stocks
were extended by Sandmann and Wittke [10] into a unified framework capable
of pricing different lognormal assets under deterministic or stochastic interest
rates. Martinkut-Kaulien [7] discussed the characteristics and applications of
chooser options, highlighting their flexibility in adapting to price movements
of underlying assets.

In this paper, we study chooser options written on various underlying assets
other than vanilla call and put options. Specifically, we deal with (i) the chooser
option written on the power call and put options, and (ii) the chooser option
written on exchange options, and derive the prices of these chooser options.

For the derivation of the prices of the chooser options whose underlying
assets are either power options or exchange options, rather than the vanilla
call and put options, we need to apply the method used for the derivation of
the chooser option written on the vanilla call and put options. Hence, we first
explain the method for the derivation of the price of the chooser option written
on the vanilla call and put options in detail, and then we apply the method
to the derivation of the prices of the chooser options written on either power
options or exchange options.

The rest of the paper is organized as follows. In Section 2, we review the
method for the derivation of the price of the chooser option on the vanilla call
and put options. In Section 3, we derive an explicit formula for the price of
the chooser option written on the power call and put options. In Section 4,
we derive an explicit formula for the price of the chooser option written on the
exchange options.

2. Preliminary: Chooser options on vanilla call and put options

In this section, we present known results on the chooser option written on
the vanilla call and put. The holder of this chooser option can choose between
the vanilla call and put prior to the expiration. We explain how to derive
the price of the chooser option and present an explicit formula for the price.
The method explained in this section will be used in Sections 3 and 4 for the
derivation of the price of chooser options written on various underlying options
other than vanilla call and put.

Suppose that under a risk-neutral probability P, the stock price process S(t),
t ≥ 0, satisfies the standard Black-Scholes model:

dS(t) = S(t)(rdt+ σdW (t)),

where r is the risk-free interest rate, σ is the volatility of the stock price and
W (t), t ≥ 0, is a Brownian motion under P.

We consider the call and put options with strike price K and maturity T > 0
written on the stock. The payoffs of the call and put options at maturity T are
given by

(S(T )−K)+ and (K − S(T ))+,
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Figure 1. Expiration time of a chooser option.

respectively. For 0 ≤ t < T , s > 0 and K > 0, let c(t, s,K, T ) and p(t, s,K, T )
be the prices at time t of the call and put options with strike price K and
maturity T , respectively, given S(t) = s. By the risk-neutral pricing, the prices
c(t, s,K, T ) and p(t, s,K, T ) are given by

c(t, s,K, T ) = e−r(T−t)E[(S(T )−K)+|S(t) = s],

p(t, s,K, T ) = e−r(T−t)E[(K − S(T ))+|S(t) = s],

respectively. The Black-Scholes formula provides the explicit expressions for
c(t, s,K, T ) and p(t, s,K, T ), as shown below.

Theorem 2.1 (Black and Scholes [1]). Let 0 ≤ t < T . Given S(t) = s, the
call price at t, c(t, s,K, T ), and the put price at t, p(t, s,K, T ) with strike price
K and maturity T are given by

c(t, s,K, T ) = sN(d1)−Ke−r(T−t)N(d2),

p(t, s,K, T ) = Ke−r(T−t)N(−d2)− sN(−d1),

where

d1 =
ln s

K + (T − t)(r + σ2

2 )

σ
√
T − t

,

d2 = d1 − σ
√
T − t.

Now, we describe a chooser option on vanilla call and put options. Let
0 ≤ t < T0 < T . We consider a chooser option with vanilla call and put
options as underlying assets. The vanilla call and put options have strike price
K and maturity T . If the maturity of the chooser option is T0, then the holder
of the chooser option can choose at T0 between the call and put options; see
Figure 1. Since the prices at T0 of the call and put options with strike price K
and maturity T are c(T0, S(T0),K, T ) and p(T0, S(T0),K, T ), respectively, the
payoff of the chooser option at maturity T0 is given by

max{c(T0, S(T0),K, T ), p(T0, S(T0),K, T )}.
Therefore, given S(t) = s, the price at t, CH(t, s, T0,K, T ) of the chooser option
is given by

CH(t, s, T0,K, T )

= e−r(T0−t)E[max{c(T0, S(T0),K, T ), p(T0, S(T0),K, T )} |S(t) = s].
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Note that

max{c(T0, S(T0),K, T ), p(T0, S(T0),K, T )}
= (c(T0, S(T0),K, T )− p(T0, S(T0),K, T ))+ + p(T0, S(T0),K, T ).

Since

c(T0, S(T0),K, T )− p(T0, S(T0),K, T ) = S(T0)− e−r(T−T0)K

by the put-call parity, we have

max{c(T0, S(T0),K, T ), p(T0, S(T0),K, T )}

= (S(T0)− e−r(T−T0)K)+ + p(T0, S(T0),K, T ).

Therefore,

CH(t, s, T0,K, T )

= e−r(T0−t)E[(S(T0)− e−r(T−T0)K)+ + p(T0, S(T0),K, T ) |S(t) = s]

= e−r(T0−t)E[(S(T0)− e−r(T−T0)K)+ |S(t) = s]

+ e−r(T0−t)E[p(T0, S(T0),K, T ) |S(t) = s].

Since

e−r(T0−t)E[(S(T0)− e−r(T−T0)K)+ |S(t) = s] = c(t, s, e−r(T−T0)K,T0)

and

e−r(T0−t)E[p(T0, S(T0),K, T ) |S(t) = s]

= e−r(T0−t)E[e−r(T−T0)E[(K − S(T ))+ |S(T0)] |S(t) = s]

= e−r(T−t)E[(K − S(T ))+ |S(t) = s]

= p(t, s,K, T ),

we have the following theorem.

Theorem 2.2 (Rubinstein [8]). Let 0 ≤ t < T0 < T . The price at t of the
chooser option that chooses at T0 between the call and put options with strike
price K and maturity T is given by

CH(t, s, T0,K, T ) = c(t, s, e−r(T−T0)K,T0) + p(t, s,K, T ).(1)

Remark 1. By using the relation

max{c(T0, S(T0),K, T ), p(T0, S(T0),K, T )}
= (p(T0, S(T0),K, T )− c(T0, S(T0),K, T ))+ + c(T0, S(T0),K, T ),

we can obtain another expression for CH(t, s, T0,K, T ):

CH(t, s, T0,K, T ) = p(t, s, e−r(T−T0)K,T0) + c(t, s,K, T ).

This can also be obtained from (1) by applying the put-call parity:

c(t, s, e−r(T−T0)K,T0)− p(t, s, e−r(T−T0)K,T0) = s− e−r(T−t)K,
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Figure 2. Expiration time of a chooser power option.

c(t, s,K, T )− p(t, s,K, T ) = s− e−r(T−t)K.

3. Chooser options on power call and put options

We consider the mth power call and put options with strike price K and
maturity T > 0 written on the stock. The payoffs of the mth power call and
put options at maturity T are given by

((S(T ))m −Km)+ and (Km − (S(T ))m)+,

respectively. For 0 ≤ t < T , s > 0, m > 0 and K > 0, let c(m)(t, s,K, T ) and
p(m)(t, s,K, T ) be the prices at t of the mth power call and put options with
strike price K and maturity T , respectively, given S(t) = s. By the risk-neutral
pricing, the prices c(m)(t, s,K, T ) and p(m)(t, s,K, T ) are given by

c(m)(t, s,K, T ) = e−r(T−t)E[(S(T ))m −Km)+ |S(t) = s],

p(m)(t, s,K, T ) = e−r(T−t)E[(Km − (S(T ))m)+ |S(t) = s].

The following theorem provides the explicit expressions for c(m)(t, s,K, T ) and
p(m)(t, s,K, T ):

Theorem 3.1 (Heynen and Kat [3]). Let 0 ≤ t < T . Given S(t) = s, the
mth power call price at t, c(m)(t, s,K, T ), and the mth power put price at t,
p(m)(t, s,K, T ) with strike price K and maturity T are given by

c(m)(t, s,K, T ) = sme(m−1)(r+mσ2

2 )(T−t)N(d1)−Kme−r(T−t)N(d2),

p(m)(t, s,K, T ) = Kme−r(T−t)N(−d2)− sme(m−1)(r+mσ2

2 )(T−t)N(−d1),

where

d1 =
ln s

K + (T − t)(r − σ2

2 +mσ2)

σ
√
T − t

,

d2 = d1 −mσ
√
T − t.

Now, we describe a chooser option on power call and put options. Let
0 ≤ t < T0 < T . If the maturity of the chooser option is T0, then the holder
of the chooser option can choose at T0 between the mth power call and put
options; see Figure 2. Note that the prices at T0 of the mth power call and
put options with strike price K and maturity T are c(m)(T0, S(T0),K, T ) and
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p(m)(T0, S(T0),K, T ), respectively. The chooser option that chooses at T0 be-
tween the mth power call and put options with strike price K and maturity T
has payoff

max{c(m)(T0, S(T0),K, T ), p(m)(T0, S(T0),K, T )}

at T0. Therefore, given S(t) = s, the price at t, CH(m)(t, s, T0,K, T ) of the
chooser power option is given by

CH(m)(t, s, T0,K, T )

= e−r(T0−t)E[max{c(m)(T0, S(T0),K, T ), p(m)(T0, S(T0),K, T )} |S(t) = s].

Note that

max{c(m)(T0, S(T0),K, T ), p(m)(T0, S(T0),K, T )}

= (c(m)(T0, S(T0),K, T )− p(m)(T0, S(T0),K, T ))+ + p(m)(T0, S(T0),K, T ).

Since

c(m)(T0, S(T0),K, T )− p(m)(T0, S(T0),K, T )

= e(m−1)(r+mσ2

2 )(T−T0)(S(T0))
m − e−r(T−T0)Km

by the power put-call parity (see, for example, Lemma II.1 of [5]), we have

max{c(m)(T0, S(T0),K, T ), p(m)(T0, S(T0),K, T )}

= (e(m−1)(r+mσ2

2 )(T−T0)(S(T0))
m − e−r(T−T0)Km)+ + p(m)(T0, S(T0),K, T ).

Therefore,

CH(m)(t, s, T0,K, T )

= e−r(T0−t)E[(e(m−1)(r+mσ2

2 )(T−T0)(S(T0))
m − e−r(T−T0)Km)+

+ p(m)(T0, S(T0),K, T ) |S(t) = s]

= e(m−1)(r+mσ2

2 )(T−T0)e−r(T0−t)E[((S(T0))
m −

(
e−(r+m−1

2 σ2)(T−T0)K
)m

)+ |S(t)=s]

+e−r(T0−t)E[p(m)(T0, S(T0),K, T ) |S(t) = s].

Since

e−r(T0−t)E[((S(T0))
m −

(
e−(r+m−1

2 σ2)(T−T0)K
)m

)+ |S(t) = s]

= c(m)(t, s, e−(r+m−1
2 σ2)(T−T0)K,T0),

and

e−r(T0−t)E[p(m)(T0, S(T0),K, T ) |S(t) = s]

= e−r(T0−t)E[e−r(T−T0)E[(Km − (S(T ))m)+ |S(T0)] |S(t) = s]

= e−r(T−t)E[(Km − (S(T ))m)+ |S(t) = s]

= p(m)(t, s,K, T ),
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we have the following theorem.

Theorem 3.2. Let 0 ≤ t < T0 < T . The price at t of the chooser power option
that chooses at T0 between the mth power call and put options with strike price
K and maturity T is given by

CH(m)(t, s, T0,K, T )(2)

= e(m−1)(r+mσ2

2 )(T−T0)c(m)(t, s, e−(r+m−1
2 σ2)(T−T0)K,T0) + p(m)(t, s,K, T ).

Remark 2. By using the relation

max{c(m)(T0, S(T0),K, T ), p(m)(T0, S(T0),K, T )}

= (p(m)(T0, S(T0),K, T )− c(m)(T0, S(T0),K, T ))+ + c(m)(T0, S(T0),K, T ),

we can obtain another expression for CH(m)(t, s, T0,K, T ):

CH(m)(t, s, T0,K, T )

= e(m−1)(r+mσ2

2 )(T−T0)p(m)(t, s, e−(r+m−1
2 σ2)(T−T0)K,T0) + c(m)(t, s,K, T ).

This can also be obtained from (2) by applying the put-call parity:

c(m)(t, s, e−(r+m−1
2 σ2)(T−T0)K,T0)− p(m)(t, s, e−(r+m−1

2 σ2)(T−T0)K,T0)

= (S(t))me(m−1)(r+mσ2

2 )(T0−t) − e−r(T0−t)(e−(r+m−1
2 σ2)(T−T0)K)m,

c(m)(t, s,K, T )− p(m)(t, s,K, T )

= (S(t))me(m−1)(r+mσ2

2 )(T−t) − e−r(T−t)Km.

To illustrate Theorem 3.2, we provide a numerical example.

Example 1. Consider the Black-Scholes model with parameters: r = 0.05,
σ = 0.3, s = 1, T0 = 1.

Figure 3 shows the prices at 0, CH(m)(0, 1, 1,K, T ) of chooser power options
that choose at T0 = 1 between the mth power call and the mth power put
options with strike price K and maturity T for Example 1 with T varying,
when K = 0.8, 1, 1.2 and m = 1, 1.5, 2. It is noted that when m = 1,

CH(m)(0, 1, 1,K, T ) corresponds to the price of a chooser option on the vanilla
call and put options discussed in Section 2.

4. Chooser options on exchange options

Suppose there are two assets called the first and the second assets. Under
a risk-neutral probability P, the prices at t of the assets Si(t), i = 1, 2, satisfy
the following equations:

dS1(t) = S1(t)(rdt+ σ1dW1(t)),

dS2(t) = S2(t)(rdt+ σ2dW2(t)),
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Figure 3. Prices at 0 of chooser power options for Example
1 with varying T .
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Figure 4. Expiration time of a chooser exchange option.

where r is the risk-free interest rate, σ1 and σ2 are the volatilities of the as-
set prices and W1(t) and W2(t), t ≥ 0, are Brownian motions under P with
dW1(t)dW2(t) = ρdt, −1 < ρ < 1.

We consider the exchange option on two underlying assets S1(t) and S2(t).
The holder of the exchange option with maturity T has the right to exchange
the second asset for the first asset at T . Therefore, the payoff of the exchange
option at maturity T is

(S1(T )− S2(T ))
+.

For 0 ≤ t < T , s1 > 0 and s2 > 0, let ex1,2(t, s1, s2, T ) be the price at t of
the exchange option with maturity T , given S1(t) = s1 and S2(t) = s2. By the
risk-neutral pricing, the price ex1,2(t, s1, s2, T ) is given by

ex1,2(t, s1, s2, T ) = e−r(T−t)E[(S1(T )− S2(T ))
+ |S1(t) = s1, S2(t) = s2].

The following theorem provides the explicit expression for ex1,2(t, s1, s2, T ):

Theorem 4.1 (Margrabe [6]). Let 0 ≤ t < T . Given S1(t) = s1 and S2(t) =
s2, the price at t of the exchange option with the right to exchange the second
asset for the first asset at maturity T is given by

ex1,2(t, s1, s2, T ) = S1(t)N(d1)− S2(t)N(d2),

where

d1 =
ln S1(t)

S2(t)
+ σ̃2

2 (T − t)

σ̃
√
T − t

,

d2 = d1 − σ̃
√
T − t

with σ̃2 = σ2
1 + σ2

2 − 2σ1σ2ρ.

Now, we describe a chooser option on two exchange options: (i) the exchange
options with the right to exchange the second asset for the first asset at maturity
T , and alternatively, (ii) the exchange options with the right to exchange the
first asset for the second asset at maturity T . If the maturity of the chooser
option is T0, then the holder of the chooser option can choose at T0 between the
two exchange options; see Figure 4. The prices at t of the two exchange options
are denoted by ex1,2(t, s1, s2, T ) and ex2,1(t, s1, s2, T ), respectively. Let 0 ≤ t <
T0 < T . Note that the prices at T0 of the two exchange options are given by
ex1,2(T0, S1(T0), S2(T0), T ) and ex2,1(T0, S1(T0), S2(T0), T ), respectively. The
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payoff at maturity T0 of the chooser option that chooses at T0 between the two
exchange options is given by

max{ex1,2(T0, S1(T0), S2(T0), T ), ex2,1(T0, S1(T0), S2(T0), T )}.

Therefore, given S1(t) = s1 and S2(t) = s2, the price at t, CHEX(t, s1, s2, T0, T )
of the chooser exchange option is given by

CHEX(t, s1, s2, T0, T )

= e−r(T0−t)E[max{ex1,2(T0, S1(T0), S2(T0), T ), ex2,1(T0, S1(T0), S2(T0), T )}
|S1(t) = s1, S2(t) = s2].

Note that

max{ex1,2(T0, S1(T0), S2(T0), T ), ex2,1(T0, S1(T0), S2(T0), T )}
= (ex1,2(T0, S1(T0), S2(T0), T )− ex2,1(T0, S1(T0), S2(T0), T ))

+

+ ex2,1(T0, S1(T0), S2(T0), T ).

Since

ex1,2(T0, S1(T0), S2(T0), T )− ex2,1(T0, S1(T0), S2(T0), T ) = S1(T0)− S2(T0)

by the put-call parity, we have

max{ex1,2(T0, S1(T0), S2(T0), T ), ex2,1(T0, S1(T0), S2(T0), T )}
= (S1(T0)− S2(T0))

+ + ex2,1(T0, S1(T0), S2(T0), T ).

Therefore,

CHEX(t, s1, s2, T0, T )

= e−r(T0−t)E[(S1(T0)−S2(T0))
++ex2,1(T0, S1(T0), S2(T0), T ) |S1(t)=s1, S2(t)=s2]

= e−r(T0−t)E[(S1(T0)− S2(T0))
+ |S1(t) = s1, S2(t) = s2]

+ e−r(T0−t)E[ex2,1(T0, S1(T0), S2(T0), T ) |S1(t) = s1, S2(t) = s2].

Since

e−r(T0−t)E[(S1(T0))− S2(T0))
+ |S1(t) = s1, S2(t) = s2] = ex1,2(t, s1, s2, T0),

and

e−r(T0−t)E[ex2,1(T0, S1(T0), S2(T0), T ) |S1(t) = s1, S2(t) = s2]

= e−r(T0−t)E[e−r(T−T0)E[(S2(T )−S1(T ))
+|S1(T0), S2(T0)] |S1(t)=s1, S2(t)=s2]

= e−r(T−t)E[(S2(T )− S1(T ))
+ |S1(t) = s1, S2(t) = s2]

= ex2,1(t, s1, s2, T ),

we have the following theorem.



CHOOSER OPTIONS ON VARIOUS UNDERLYING OPTIONS 545

Theorem 4.2. Let 0 ≤ t < T0 < T . Given S1(t) = s1 and S2(t) = s2, the
price at t of the chooser exchange option that chooses at T0 between the two
exchange options is given by

CHEX(t, s1, s2, T0, T ) = ex1,2(t, s1, s2, T0) + ex2,1(t, s1, s2, T ).(3)

Remark 3. By using the relation

max{ex1,2(T0, S1(T0), S2(T0), T ), ex2,1(T0, S1(T0), S2(T0), T )}
= (ex2,1(T0, S1(T0), S2(T0), T )− ex1,2(T0, S1(T0), S2(T0), T ))

+

+ ex1,2(T0, S1(T0), S2(T0), T ),

we can obtain another expression for CHEX(t, s1, s2, T0, T ):

CHEX(t, s1, s2, T0, T ) = ex2,1(t, s1, s2, T0) + ex1,2(t, s1, s2, T ).

This can also be obtained from (3) by applying the put-call parity:

ex1,2(t, s1, s2, T0)− ex2,1(t, s1, s2, T0) = S1(t)− S2(t),

ex1,2(t, s1, s2, T )− ex2,1(t, s1, s2, T ) = S1(t)− S2(t).

To illustrate Theorem 4.2, we provide a numerical example.

Example 2. Consider the Black-Scholes model with two assets. We use the
following parameter values: s1 = 1, σ1 = 0.4, σ2 = 0.2, ρ = 0.5, T0 = 1.

1 1.5 2 2.5 3

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

Figure 5. Prices at 0 of chooser exchange options for Exam-
ple 2 with varying T .

Figure 5 shows the prices at 0, CHEX(0, 1, s2, 1, T ) of chooser exchange
options for Example 2 with T varying, when s2 = 0.8, 1, 1.2.
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