참고문헌
- O. P. Ahuja, S. Kumar, and V. Ravichandran, Applications of first order differential subordination for functions with positive real part, Stud. Univ. Babes-Bolyai Math. 63 (2018), no. 3, 303-311. https://doi.org/10.24193/subbmath.2018.3.02
- A. Alotaibi, M. Arif, M. A. Alghamdi, and S. Hussain, Starlikness associated with cosine hyperbolic function, Mathematics 8 (2020), no. 7, 1118. https://doi.org/10.3390/math8071118
- K. O. Babalola, On H3(1) Hankel determinant for some classes of univalent functions, Ineq. Theory Appl. 6 (2010), 1-7.
- K. Bano and M. Raza, Starlike functions associated with cosine functions, Bull. Iranian Math. Soc. 47 (2021), no. 5, 1513-1532. https://doi.org/10.1007/s41980-020-00456-9
- N. Bohra, S. Kumar, and V. Ravichandran, Some special differential subordinations, Hacet. J. Math. Stat. 48 (2019), no. 4, 1017-1034. https://doi.org/10.15672/hjms.2018.570
- N. Bohra, S. Kumar, and V. Ravichandran, Applications of Briot-Bouquet differential subordination, J. Class. Anal. 18 (2021), no. 1, 17-28. https://doi.org/10.7153/jca-2021-18-02
- P. L. Duren, Univalent functions, Grundlehren der mathematischen Wissenschaften, 259, Springer, New York, 1983.
- P. J. Eenigenburg, S. S. Miller, P. T. Mocanu, and M. O. Reade, On a Briot-Bouquet differential subordination, in General inequalities, 3 (Oberwolfach, 1981), 339-348, Internat. Schriftenreihe Numer. Math., 64, Birkhauser, Basel, 1983.
- R. M. Goel, On the partial sums of a class of univalent functions, Ann. Univ. Mariae Curie-Sk lodowska Sect. A 19 (1965), 17-23.
- D. J. Hallenbeck and S. Ruscheweyh, Subordination by convex functions, Proc. Amer. Math. Soc. 52 (1975), 191-195. https://doi.org/10.2307/2040127
- K. Hu and Y. F. Pan, On a theorem of Szego, J. Math. Res. Exposition 4 (1984), no. 1, 41-44.
- B. Kowalczyk, A. Lecko, and Y. J. Sim, The sharp bound for the Hankel determinant of the third kind for convex functions, Bull. Aust. Math. Soc. 97 (2018), no. 3, 435-445. https://doi.org/10.1017/S0004972717001125
- S. Kumar and A. Cetinkaya, Coefficient inequalities for certain starlike and convex functions, Hacet. J. Math. Stat. 51 (2022), no. 1, 156-171. https://doi.org/10.15672/hujms.778148
- V. Kumar, N. E. Cho, V. Ravichandran, and H. M. Srivastava, Sharp coefficient bounds for starlike functions associated with the Bell numbers, Math. Slovaca 69 (2019), no. 5, 1053-1064. https://doi.org/10.1515/ms-2017-0289
- S. Kumar and V. Ravichandran, Subordinations for functions with positive real part, Complex Anal. Oper. Theory 12 (2018), no. 5, 1179-1191. https://doi.org/10.1007/s11785-017-0690-4
- S. K. Lee, V. Ravichandran, and S. Supramaniam, Bounds for the second Hankel determinant of certain univalent functions, J. Inequal. Appl. 2013 (2013), 281, 17 pp. https://doi.org/10.1186/1029-242X-2013-281
- T. H. MacGregor, Majorization by univalent functions, Duke Math. J. 34 (1967), 95-102. http://projecteuclid.org/euclid.dmj/1077376845 1077376845
- S. S. Miller and P. T. Mocanu, Univalent solutions of Briot-Bouquet differential equations, J. Differential Equations 56 (1985), no. 3, 297-309. https://doi.org/10.1016/0022-0396(85)90082-8
- A. Naz, S. Kumar, and V. Ravichandran, Coefficient functionals and radius problems of certain starlike functions, Asian-Eur. J. Math. 15 (2022), no. 5, Paper No. 2250089, 19 pp. https://doi.org/10.1142/S1793557122500899
- M. Obradovic, N. Tuneski, and P. Zaprawa, Sharp bounds of the third Hankel determinant for classes of univalent functions with bounded turning, Math. Bohem. 147 (2022), no. 2, 211-220. https://doi.org/10.21136/MB.2021.0078-20
- C. Pommerenke, On the coefficients and Hankel determinants of univalent functions, J. London Math. Soc. 41 (1966), 111-122. https://doi.org/10.1112/jlms/s1-41.1.111
- B. Rath, K. Sanjay Kumar, D. V. Krishna, and A. Lecko, The sharp bound of the third Hankel determinant for starlike functions of order 1/2, Complex Anal. Oper. Theory 16 (2022), no. 5, Paper No. 65, 8 pp. https://doi.org/10.1007/s11785-022-01241-8
- V. Ravichandran, Geometric properties of partial sums of univalent function, Mathematics Newsletter 22 (2012), no. 3, 208-221.
- V. Ravichandran and S. Verma, Bound for the fifth coefficient of certain starlike functions, C. R. Math. Acad. Sci. Paris 353 (2015), no. 6, 505-510. https://doi.org/10.1016/j.crma.2015.03.003
- H. Silverman, Partial sums of starlike and convex functions, J. Math. Anal. Appl. 209 (1997), no. 1, 221-227. https://doi.org/10.1006/jmaa.1997.5361
- E. M. Silvia, On partial sums of convex functions of order α, Houston J. Math. 11 (1985), no. 3, 397-404.
- G. Szego, Zur Theorie der schlichten Abbildungen, Math. Ann. 100 (1928), no. 1, 188-211. https://doi.org/10.1007/BF01448843
- H. Tang, H. M. Srivastava, S. Li, and G. Deng, Majorization results for subclasses of starlike functions based on the sine and cosine functions, Bull. Iranian Math. Soc. 46 (2020), no. 2, 381-388. https://doi.org/10.1007/s41980-019-00262-y