DOI QR코드

DOI QR Code

Deep Learning in Dental Radiographic Imaging

  • Hyuntae Kim (Department of Pediatric Dentistry, Seoul National University Dental Hospital)
  • Received : 2024.02.11
  • Accepted : 2024.02.17
  • Published : 2024.02.29

Abstract

Deep learning algorithms are becoming more prevalent in dental research because they are utilized in everyday activities. However, dental researchers and clinicians find it challenging to interpret deep learning studies. This review aimed to provide an overview of the general concept of deep learning and current deep learning research in dental radiographic image analysis. In addition, the process of implementing deep learning research is described. Deep-learning-based algorithmic models perform well in classification, object detection, and segmentation tasks, making it possible to automatically diagnose oral lesions and anatomical structures. The deep learning model can enhance the decision-making process for researchers and clinicians. This review may be useful to dental researchers who are currently evaluating and assessing deep learning studies in the field of dentistry.

Keywords

References

  1. Tan H, Peres KG, Peres MA : Retention of Teeth and Oral Health-Related Quality of Life. J Dent Res, 95:1350-1357, 2016.  https://doi.org/10.1177/0022034516657992
  2. Park HE, Song HY, Han K, Cho KH, Kim YH : Number of remaining teeth and health-related quality of life: the Korean National Health and Nutrition Examination Survey 2010-2012. Health Qual Life Outcomes, 17:5, 2019. 
  3. Gerritsen AE, Allen PF, Witter DJ, Bronkhorst EM, Creugers NH : Tooth loss and oral health-related quality of life: a systematic review and meta-analysis. Health Qual Life Outcomes, 8:126, 2010. 
  4. Gao L, Xu T, Huang G, Jiang S, Gu Y, Chen F : Oral microbiomes: more and more importance in oral cavity and whole body. Protein Cell, 9:488-500, 2018.  https://doi.org/10.1007/s13238-018-0548-1
  5. Arweiler NB, Netuschil L : The Oral Microbiota. In: Schwiertz A, editor. Microbiota of the Human Body: Implications in Health and Disease. Springer International Publishing, Cham, 45-60, 2016. 
  6. Simon-Soro A, Tomas I, Cabrera-Rubio R, Catalan MD, Nyvad B, Mira A : Microbial geography of the oral cavity. J Dent Res, 92:616-621, 2013.  https://doi.org/10.1177/0022034513488119
  7. An SQ, Hull R, Metris A, Barrett P, Webb JS, Stoodley P : An in vitro biofilm model system to facilitate study of microbial communities of the human oral cavity. Lett Appl Microbiol, 74:302-310, 2022.  https://doi.org/10.1111/lam.13618
  8. Nath S, Sethi S, Bastos JL, Constante HM, Mejia G, Haag D, Kapellas K, Jamieson L : The Global Prevalence and Severity of Dental Caries among Racially Minoritized Children: A Systematic Review and Meta-Analysis. Caries Res, 57:485-508, 2023.  https://doi.org/10.1159/000533565
  9. Wen PYF, Chen MX, Zhong YJ, Dong QQ, Wong HM : Global Burden and Inequality of Dental Caries, 1990 to 2019. J Dent Res, 101:392-399, 2022.  https://doi.org/10.1177/00220345211056247
  10. Janakiram C, Mehta A, Venkitachalam R : Prevalence of periodontal disease among adults in India: A systematic review and meta-analysis. J Oral Biol Craniofac Res, 10:800-806, 2020.  https://doi.org/10.1016/j.jobcr.2020.10.016
  11. Alawaji YN, Alshammari A, Mostafa N, Carvalho RM, Aleksejuniene J : Periodontal disease prevalence, extent, and risk associations in untreated individuals. Clin Exp Dent Res, 8:380-394, 2022.  https://doi.org/10.1002/cre2.526
  12. Chan HP, Hadjiiski LM, Samala RK : Computer-aided diagnosis in the era of deep learning. Med Phys, 47:E218-E227, 2020.  https://doi.org/10.1002/mp.13764
  13. Schwendicke F, Samek W, Krois J : Artificial Intelligence in Dentistry: Chances and Challenges. J Dent Res, 99:769-774, 2020.  https://doi.org/10.1177/0022034520915714
  14. Huang CX, Wang JJ, Wang SH, Zhang YD : A review of deep learning in dentistry. Neurocomputing, 554:126629, 2023. 
  15. Yamashita R, Nishio M, Do RKG, Togashi K : Convolutional neural networks: an overview and application in radiology. Insights Imaging, 9:611-629, 2018.  https://doi.org/10.1007/s13244-018-0639-9
  16. Schwendicke F, Golla T, Dreher M, Krois J : Convolutional neural networks for dental image diagnostics: A scoping review. J Dent, 91:103226, 2019. 
  17. He K, Zhang X, Ren S, Sun J : Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition, 770-778, 2016. 
  18. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A : Going deeper with convolutions. Proceedings of the IEEE conference on computer vision and pattern recognition, 1-9, 2015. 
  19. Ahn Y, Hwang JJ, Jung YH, Jeong T, Shin J : Automated Mesiodens Classification System Using Deep Learning on Panoramic Radiographs of Children. Diagnostics (Basel), 11:1477, 2021. 
  20. Lee JH, Kim DH, Jeong SN, Choi SH : Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. J Dent, 77:106-111, 2018.  https://doi.org/10.1016/j.jdent.2018.07.015
  21. Sukegawa S, Yoshii K, Hara T, Yamashita K, Nakano K, Yamamoto N, Nagatsuka H, Furuki Y : Deep Neural Networks for Dental Implant System Classification. Biomolecules, 10:984, 2020. 
  22. Jung W, Lee KE, Suh BJ, Seok H, Lee DW : Deep learning for osteoarthritis classification in temporomandibular joint. Oral Dis, 29:1050-1059, 2023.  https://doi.org/10.1111/odi.14056
  23. Chen H, Zhang K, Lyu P, Li H, Zhang L, Wu J, Lee CH : A deep learning approach to automatic teeth detection and numbering based on object detection in dental periapical films. Sci Rep, 9:3840, 2019. 
  24. Girshick R, Donahue J, Darrell T, Malik J : Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the IEEE conference on computer vision and pattern recognition, 580-587, 2014. 
  25. Girshick R : Fast R-CNN. Proceedings of the IEEE international conference on computer vision, 1440-1448, 2015. 
  26. Ren SQ, He KM, Girshick R, Sun J : Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. Advances in Neural Information Processing Systems 28 (Nips 2015), 28, 2015. 
  27. Du J : Understanding of Object Detection Based on CNN Family and YOLO. J Phys Conf Ser, 1004:012029, 2018. 
  28. Kim C, Kim D, Jeong H, Yoon SJ, Youm S : Automatic Tooth Detection and Numbering Using a Combination of a CNN and Heuristic Algorithm. Appl Sci, 10: 5624, 2020. 
  29. Ha EG, Jeon KJ, Kim YH, Kim JY, Han SS : Automatic detection of mesiodens on panoramic radiographs using artificial intelligence. Sci Rep, 11:23061, 2021. 
  30. Kuwada C, Ariji Y, Kise Y, Fukuda M, Ota J, Ohara H, Kojima N, Ariji E : Detection of unilateral and bilateral cleft alveolus on panoramic radiographs using a deep-learning system. Dentomaxillofac Radiol, 52:20210436, 2023. 
  31. Bharati P, Pramanik A : Deep Learning Techniques - R-CNN to Mask R-CNN: A Survey. Springer Singapore, Singapore, 657-668, 2020. 
  32. Anantharaman R, Velazquez M, Lee Y : Utilizing Mask R-CNN for Detection and Segmentation of Oral Diseases. 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2197-2204, 2018. 
  33. Ronneberger O, Fischer P, Brox T : U-Net: Convolutional Networks for Biomedical Image Segmentation. Springer International Publishing, Cham, 234-241, 2015. 
  34. Song IS, Shin HK, Kang JH, Kim JE, Huh KH, Yi WJ, Lee SS, Heo MS : Deep learning-based apical lesion segmentation from panoramic radiographs. Imaging Sci Dent, 52:351-357, 2022.  https://doi.org/10.5624/isd.20220078
  35. Cha JY, Yoon HI, Yeo IS, Huh KH, Han JS : Panoptic Segmentation on Panoramic Radiographs: Deep Learning-Based Segmentation of Various Structures Including Maxillary Sinus and Mandibular Canal. J Clin Med, 10:2577, 2021. 
  36. Ying S, Wang B, Zhu H, Liu W, Huang F : Caries segmentation on tooth X-ray images with a deep network. J Dent, 119:104076, 2022. 
  37. Bayrakdar IS, Orhan K, Akarsu S, Celik O, Atasoy S, Pekince A, Yasa Y, Bilgir E, Saglam H, Aslan AF, Odabas A : Deep-learning approach for caries detection and segmentation on dental bitewing radiographs. Oral Radiol, 38:468-479, 2022.  https://doi.org/10.1007/s11282-021-00577-9
  38. Setzer FC, Shi KJ, Zhang Z, Yan H, Yoon H, Mupparapu M, Li J : Artificial Intelligence for the Computer-aided Detection of Periapical Lesions in Cone-beam Computed Tomographic Images. J Endod, 46:987-993, 2020.  https://doi.org/10.1016/j.joen.2020.03.025
  39. Lahoud P, Diels S, Niclaes L, Van Aelst S, Willems H, Van Gerven A, Quirynen M, Jacobs R : Development and validation of a novel artificial intelligence driven tool for accurate mandibular canal segmentation on CBCT. J Dent, 116:103891, 2022. 
  40. Nozawa M, Ito H, Ariji Y, Fukuda M, Igarashi C, Nishiyama M, Ogi N, Katsumata A, Kobayashi K, Ariji E : Automatic segmentation of the temporomandibular joint disc on magnetic resonance images using a deep learning technique. Dentomaxillofac Radiol, 51:20210185, 2022. 
  41. Mohammad-Rahimi H, Rokhshad R, Bencharit S, Krois J, Schwendicke F : Deep learning: A primer for dentists and dental researchers. J Dent, 130:104430, 2023. 
  42. Montagnon E, Cerny M, Cadrin-Chenevert A, Hamilton V, Derennes T, Ilinca A, Vandenbroucke-Menu F, Turcotte S, Kadoury S, Tang A : Deep learning workflow in radiology: a primer. Insights Imaging, 11:22, 2020. 
  43. Cheng L, Zhang L, Yue L, Ling J, Fan M, Yang D, Huang Z, Niu Y, Liu J, Zhao J, Li Y, Guo B, Chen Z, Zhou X : Expert consensus on dental caries management. Int J Oral Sci, 14:17, 2022. 
  44. Lee S, Oh SI, Jo J, Kang S, Shin Y, Park JW : Deep learning for early dental caries detection in bitewing radiographs. Sci Rep, 11:16807, 2021. 
  45. Cantu AG, Gehrung S, Krois J, Chaurasia A, Rossi JG, Gaudin R, Elhennawy K, Schwendicke F : Detecting caries lesions of different radiographic extension on bitewings using deep learning. J Dent, 100:103425, 2020. 
  46. Gao ZK, Yuan T, Zhou XJ, Ma C, Ma K, Hui P : A Deep Learning Method for Improving the Classification Accuracy of SSMVEP-Based BCI. IEEE Transactions on Circuits and Systems. Part 2: Express Briefs, 67:3447-3451, 2020.  https://doi.org/10.1109/TCSII.2020.2983389
  47. Park JH, Hwang HW, Moon JH, Yu Y, Kim H, Her SB, Srinivasan G, Aljanabi MNA, Donatelli RE, Lee SJ : Automated identification of cephalometric landmarks: Part 1-Comparisons between the latest deep-learning methods YOLOV3 and SSD. Angle Orthod, 89:903-909, 2019.  https://doi.org/10.2319/022019-127.1
  48. Yu HJ, Cho SR, Kim MJ, Kim WH, Kim JW, Choi J : Automated Skeletal Classification with Lateral Cephalometry Based on Artificial Intelligence. J Dent Res, 99:249-256, 2020.  https://doi.org/10.1177/0022034520901715
  49. Xie X, Wang L, Wang A : Artificial neural network modeling for deciding if extractions are necessary prior to orthodontic treatment. Angle Orthod, 80:262-266, 2010.  https://doi.org/10.2319/111608-588.1
  50. Jung SK, Kim TW : New approach for the diagnosis of extractions with neural network machine learning. Am J Orthod Dentofacial Orthop, 149:127-133, 2016.  https://doi.org/10.1016/j.ajodo.2015.07.030
  51. Fukuda M, Inamoto K, Shibata N, Ariji Y, Yanashita Y, Kutsuna S, Nakata K, Katsumata A, Fujita H, Ariji E : Evaluation of an artificial intelligence system for detecting vertical root fracture on panoramic radiography. Oral Radiol, 36:337-343, 2020.  https://doi.org/10.1007/s11282-019-00409-x
  52. Hiraiwa T, Ariji Y, Fukuda M, Kise Y, Nakata K, Katsumata A, Fujita H, Ariji E : A deep-learning artificial intelligence system for assessment of root morphology of the mandibular first molar on panoramic radiography. Dentomaxillofac Radiol, 48:20180218, 2019. 
  53. Krois J, Ekert T, Meinhold L, Golla T, Kharbot B, Wittemeier A, Dorfer C, Schwendicke F : Deep Learning for the Radiographic Detection of Periodontal Bone Loss. Sci Rep, 9:8495, 2019. 
  54. Chen CC, Wu YF, Aung LM, Lin JC, Ngo ST, Su JN, Lin YM, Chang WJ : Automatic recognition of teeth and periodontal bone loss measurement in digital radiographs using deep-learning artificial intelligence. J Dent Sci, 18:1301-1309, 2023. 
  55. Chang HJ, Lee SJ, Yong TH, Shin NY, Jang BG, Kim JE, Huh KH, Lee SS, Heo MS, Choi SC, Kim TI, Yi WJ : Deep Learning Hybrid Method to Automatically Diagnose Periodontal Bone Loss and Stage Periodontitis. Sci Rep, 10:7531, 2020. 
  56. Kong HJ, Yoo JY, Lee JH, Eom SH, Kim JH : Performance evaluation of deep learning models for the classification and identification of dental implants. J Prosthet Dent, S0022-3913(23)00467-5, 2023. 
  57. Lee JH, Kim YT, Lee JB, Jeong SN : A Performance Comparison between Automated Deep Learning and Dental Professionals in Classification of Dental Implant Systems from Dental Imaging: A Multi-Center Study. Diagnostics, 10:910, 2020. 
  58. Poedjiastoeti W, Suebnukarn S : Application of Convolutional Neural Network in the Diagnosis of Jaw Tumors. Healthc Inform Res, 24:236-241, 2018.  https://doi.org/10.4258/hir.2018.24.3.236
  59. Jung SK, Lim HK, Lee S, Cho Y, Song IS : Deep Active Learning for Automatic Segmentation of Maxillary Sinus Lesions Using a Convolutional Neural Network. Diagnostics (Basel), 11:688, 2021.