References
- Tan H, Peres KG, Peres MA : Retention of Teeth and Oral Health-Related Quality of Life. J Dent Res, 95:1350-1357, 2016. https://doi.org/10.1177/0022034516657992
- Park HE, Song HY, Han K, Cho KH, Kim YH : Number of remaining teeth and health-related quality of life: the Korean National Health and Nutrition Examination Survey 2010-2012. Health Qual Life Outcomes, 17:5, 2019.
- Gerritsen AE, Allen PF, Witter DJ, Bronkhorst EM, Creugers NH : Tooth loss and oral health-related quality of life: a systematic review and meta-analysis. Health Qual Life Outcomes, 8:126, 2010.
- Gao L, Xu T, Huang G, Jiang S, Gu Y, Chen F : Oral microbiomes: more and more importance in oral cavity and whole body. Protein Cell, 9:488-500, 2018. https://doi.org/10.1007/s13238-018-0548-1
- Arweiler NB, Netuschil L : The Oral Microbiota. In: Schwiertz A, editor. Microbiota of the Human Body: Implications in Health and Disease. Springer International Publishing, Cham, 45-60, 2016.
- Simon-Soro A, Tomas I, Cabrera-Rubio R, Catalan MD, Nyvad B, Mira A : Microbial geography of the oral cavity. J Dent Res, 92:616-621, 2013. https://doi.org/10.1177/0022034513488119
- An SQ, Hull R, Metris A, Barrett P, Webb JS, Stoodley P : An in vitro biofilm model system to facilitate study of microbial communities of the human oral cavity. Lett Appl Microbiol, 74:302-310, 2022. https://doi.org/10.1111/lam.13618
- Nath S, Sethi S, Bastos JL, Constante HM, Mejia G, Haag D, Kapellas K, Jamieson L : The Global Prevalence and Severity of Dental Caries among Racially Minoritized Children: A Systematic Review and Meta-Analysis. Caries Res, 57:485-508, 2023. https://doi.org/10.1159/000533565
- Wen PYF, Chen MX, Zhong YJ, Dong QQ, Wong HM : Global Burden and Inequality of Dental Caries, 1990 to 2019. J Dent Res, 101:392-399, 2022. https://doi.org/10.1177/00220345211056247
- Janakiram C, Mehta A, Venkitachalam R : Prevalence of periodontal disease among adults in India: A systematic review and meta-analysis. J Oral Biol Craniofac Res, 10:800-806, 2020. https://doi.org/10.1016/j.jobcr.2020.10.016
- Alawaji YN, Alshammari A, Mostafa N, Carvalho RM, Aleksejuniene J : Periodontal disease prevalence, extent, and risk associations in untreated individuals. Clin Exp Dent Res, 8:380-394, 2022. https://doi.org/10.1002/cre2.526
- Chan HP, Hadjiiski LM, Samala RK : Computer-aided diagnosis in the era of deep learning. Med Phys, 47:E218-E227, 2020. https://doi.org/10.1002/mp.13764
- Schwendicke F, Samek W, Krois J : Artificial Intelligence in Dentistry: Chances and Challenges. J Dent Res, 99:769-774, 2020. https://doi.org/10.1177/0022034520915714
- Huang CX, Wang JJ, Wang SH, Zhang YD : A review of deep learning in dentistry. Neurocomputing, 554:126629, 2023.
- Yamashita R, Nishio M, Do RKG, Togashi K : Convolutional neural networks: an overview and application in radiology. Insights Imaging, 9:611-629, 2018. https://doi.org/10.1007/s13244-018-0639-9
- Schwendicke F, Golla T, Dreher M, Krois J : Convolutional neural networks for dental image diagnostics: A scoping review. J Dent, 91:103226, 2019.
- He K, Zhang X, Ren S, Sun J : Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition, 770-778, 2016.
- Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A : Going deeper with convolutions. Proceedings of the IEEE conference on computer vision and pattern recognition, 1-9, 2015.
- Ahn Y, Hwang JJ, Jung YH, Jeong T, Shin J : Automated Mesiodens Classification System Using Deep Learning on Panoramic Radiographs of Children. Diagnostics (Basel), 11:1477, 2021.
- Lee JH, Kim DH, Jeong SN, Choi SH : Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. J Dent, 77:106-111, 2018. https://doi.org/10.1016/j.jdent.2018.07.015
- Sukegawa S, Yoshii K, Hara T, Yamashita K, Nakano K, Yamamoto N, Nagatsuka H, Furuki Y : Deep Neural Networks for Dental Implant System Classification. Biomolecules, 10:984, 2020.
- Jung W, Lee KE, Suh BJ, Seok H, Lee DW : Deep learning for osteoarthritis classification in temporomandibular joint. Oral Dis, 29:1050-1059, 2023. https://doi.org/10.1111/odi.14056
- Chen H, Zhang K, Lyu P, Li H, Zhang L, Wu J, Lee CH : A deep learning approach to automatic teeth detection and numbering based on object detection in dental periapical films. Sci Rep, 9:3840, 2019.
- Girshick R, Donahue J, Darrell T, Malik J : Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the IEEE conference on computer vision and pattern recognition, 580-587, 2014.
- Girshick R : Fast R-CNN. Proceedings of the IEEE international conference on computer vision, 1440-1448, 2015.
- Ren SQ, He KM, Girshick R, Sun J : Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. Advances in Neural Information Processing Systems 28 (Nips 2015), 28, 2015.
- Du J : Understanding of Object Detection Based on CNN Family and YOLO. J Phys Conf Ser, 1004:012029, 2018.
- Kim C, Kim D, Jeong H, Yoon SJ, Youm S : Automatic Tooth Detection and Numbering Using a Combination of a CNN and Heuristic Algorithm. Appl Sci, 10: 5624, 2020.
- Ha EG, Jeon KJ, Kim YH, Kim JY, Han SS : Automatic detection of mesiodens on panoramic radiographs using artificial intelligence. Sci Rep, 11:23061, 2021.
- Kuwada C, Ariji Y, Kise Y, Fukuda M, Ota J, Ohara H, Kojima N, Ariji E : Detection of unilateral and bilateral cleft alveolus on panoramic radiographs using a deep-learning system. Dentomaxillofac Radiol, 52:20210436, 2023.
- Bharati P, Pramanik A : Deep Learning Techniques - R-CNN to Mask R-CNN: A Survey. Springer Singapore, Singapore, 657-668, 2020.
- Anantharaman R, Velazquez M, Lee Y : Utilizing Mask R-CNN for Detection and Segmentation of Oral Diseases. 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2197-2204, 2018.
- Ronneberger O, Fischer P, Brox T : U-Net: Convolutional Networks for Biomedical Image Segmentation. Springer International Publishing, Cham, 234-241, 2015.
- Song IS, Shin HK, Kang JH, Kim JE, Huh KH, Yi WJ, Lee SS, Heo MS : Deep learning-based apical lesion segmentation from panoramic radiographs. Imaging Sci Dent, 52:351-357, 2022. https://doi.org/10.5624/isd.20220078
- Cha JY, Yoon HI, Yeo IS, Huh KH, Han JS : Panoptic Segmentation on Panoramic Radiographs: Deep Learning-Based Segmentation of Various Structures Including Maxillary Sinus and Mandibular Canal. J Clin Med, 10:2577, 2021.
- Ying S, Wang B, Zhu H, Liu W, Huang F : Caries segmentation on tooth X-ray images with a deep network. J Dent, 119:104076, 2022.
- Bayrakdar IS, Orhan K, Akarsu S, Celik O, Atasoy S, Pekince A, Yasa Y, Bilgir E, Saglam H, Aslan AF, Odabas A : Deep-learning approach for caries detection and segmentation on dental bitewing radiographs. Oral Radiol, 38:468-479, 2022. https://doi.org/10.1007/s11282-021-00577-9
- Setzer FC, Shi KJ, Zhang Z, Yan H, Yoon H, Mupparapu M, Li J : Artificial Intelligence for the Computer-aided Detection of Periapical Lesions in Cone-beam Computed Tomographic Images. J Endod, 46:987-993, 2020. https://doi.org/10.1016/j.joen.2020.03.025
- Lahoud P, Diels S, Niclaes L, Van Aelst S, Willems H, Van Gerven A, Quirynen M, Jacobs R : Development and validation of a novel artificial intelligence driven tool for accurate mandibular canal segmentation on CBCT. J Dent, 116:103891, 2022.
- Nozawa M, Ito H, Ariji Y, Fukuda M, Igarashi C, Nishiyama M, Ogi N, Katsumata A, Kobayashi K, Ariji E : Automatic segmentation of the temporomandibular joint disc on magnetic resonance images using a deep learning technique. Dentomaxillofac Radiol, 51:20210185, 2022.
- Mohammad-Rahimi H, Rokhshad R, Bencharit S, Krois J, Schwendicke F : Deep learning: A primer for dentists and dental researchers. J Dent, 130:104430, 2023.
- Montagnon E, Cerny M, Cadrin-Chenevert A, Hamilton V, Derennes T, Ilinca A, Vandenbroucke-Menu F, Turcotte S, Kadoury S, Tang A : Deep learning workflow in radiology: a primer. Insights Imaging, 11:22, 2020.
- Cheng L, Zhang L, Yue L, Ling J, Fan M, Yang D, Huang Z, Niu Y, Liu J, Zhao J, Li Y, Guo B, Chen Z, Zhou X : Expert consensus on dental caries management. Int J Oral Sci, 14:17, 2022.
- Lee S, Oh SI, Jo J, Kang S, Shin Y, Park JW : Deep learning for early dental caries detection in bitewing radiographs. Sci Rep, 11:16807, 2021.
- Cantu AG, Gehrung S, Krois J, Chaurasia A, Rossi JG, Gaudin R, Elhennawy K, Schwendicke F : Detecting caries lesions of different radiographic extension on bitewings using deep learning. J Dent, 100:103425, 2020.
- Gao ZK, Yuan T, Zhou XJ, Ma C, Ma K, Hui P : A Deep Learning Method for Improving the Classification Accuracy of SSMVEP-Based BCI. IEEE Transactions on Circuits and Systems. Part 2: Express Briefs, 67:3447-3451, 2020. https://doi.org/10.1109/TCSII.2020.2983389
- Park JH, Hwang HW, Moon JH, Yu Y, Kim H, Her SB, Srinivasan G, Aljanabi MNA, Donatelli RE, Lee SJ : Automated identification of cephalometric landmarks: Part 1-Comparisons between the latest deep-learning methods YOLOV3 and SSD. Angle Orthod, 89:903-909, 2019. https://doi.org/10.2319/022019-127.1
- Yu HJ, Cho SR, Kim MJ, Kim WH, Kim JW, Choi J : Automated Skeletal Classification with Lateral Cephalometry Based on Artificial Intelligence. J Dent Res, 99:249-256, 2020. https://doi.org/10.1177/0022034520901715
- Xie X, Wang L, Wang A : Artificial neural network modeling for deciding if extractions are necessary prior to orthodontic treatment. Angle Orthod, 80:262-266, 2010. https://doi.org/10.2319/111608-588.1
- Jung SK, Kim TW : New approach for the diagnosis of extractions with neural network machine learning. Am J Orthod Dentofacial Orthop, 149:127-133, 2016. https://doi.org/10.1016/j.ajodo.2015.07.030
- Fukuda M, Inamoto K, Shibata N, Ariji Y, Yanashita Y, Kutsuna S, Nakata K, Katsumata A, Fujita H, Ariji E : Evaluation of an artificial intelligence system for detecting vertical root fracture on panoramic radiography. Oral Radiol, 36:337-343, 2020. https://doi.org/10.1007/s11282-019-00409-x
- Hiraiwa T, Ariji Y, Fukuda M, Kise Y, Nakata K, Katsumata A, Fujita H, Ariji E : A deep-learning artificial intelligence system for assessment of root morphology of the mandibular first molar on panoramic radiography. Dentomaxillofac Radiol, 48:20180218, 2019.
- Krois J, Ekert T, Meinhold L, Golla T, Kharbot B, Wittemeier A, Dorfer C, Schwendicke F : Deep Learning for the Radiographic Detection of Periodontal Bone Loss. Sci Rep, 9:8495, 2019.
- Chen CC, Wu YF, Aung LM, Lin JC, Ngo ST, Su JN, Lin YM, Chang WJ : Automatic recognition of teeth and periodontal bone loss measurement in digital radiographs using deep-learning artificial intelligence. J Dent Sci, 18:1301-1309, 2023.
- Chang HJ, Lee SJ, Yong TH, Shin NY, Jang BG, Kim JE, Huh KH, Lee SS, Heo MS, Choi SC, Kim TI, Yi WJ : Deep Learning Hybrid Method to Automatically Diagnose Periodontal Bone Loss and Stage Periodontitis. Sci Rep, 10:7531, 2020.
- Kong HJ, Yoo JY, Lee JH, Eom SH, Kim JH : Performance evaluation of deep learning models for the classification and identification of dental implants. J Prosthet Dent, S0022-3913(23)00467-5, 2023.
- Lee JH, Kim YT, Lee JB, Jeong SN : A Performance Comparison between Automated Deep Learning and Dental Professionals in Classification of Dental Implant Systems from Dental Imaging: A Multi-Center Study. Diagnostics, 10:910, 2020.
- Poedjiastoeti W, Suebnukarn S : Application of Convolutional Neural Network in the Diagnosis of Jaw Tumors. Healthc Inform Res, 24:236-241, 2018. https://doi.org/10.4258/hir.2018.24.3.236
- Jung SK, Lim HK, Lee S, Cho Y, Song IS : Deep Active Learning for Automatic Segmentation of Maxillary Sinus Lesions Using a Convolutional Neural Network. Diagnostics (Basel), 11:688, 2021.