References
- J.G. Chen, R.M. Crooks, L.C. Seefeldt et al., Beyond fossil fuel-driven nitrogen transformations. Science 360(6391), eaar6611 (2018)
- Y.J. Jang, K.S. Choi, Enabling electrochemical N2 reduction to NH3 in the low overpotential region using non-noble metal Bi electrodes via surface composition modification. J. Mater. Chem. A 8(27), 13842 (2020)
- J. John, D.K. Lee, U. Sim, Photocatalytic and electrocatalytic approaches towards atmospheric nitrogen reduction to ammonia under ambient conditions. Nano Converg. 6(1), 15 (2019)
- K. Ithisuphalap, H. Zhang, L. Guo, Q. Yang, H. Yang, G. Wu, Photocatalysis and photoelectrocatalysis methods of nitrogen reduction for sustainable ammonia synthesis. Small Methods 3(6), 1800352 (2019)
- Y.J. Jang, A.E. Lindberg, M.A. Lumley, K.S. Choi, Photoelectrochemical nitrogen reduction to ammonia on cupric and cuprous oxide photocathodes. ACS Energy Lett. 5(6), 1834 (2020)
- G. N. Schrauzer, T. D. Guth, Photolysis of water and photoreduction of nitrogen on titanium dioxide. J. Am. Chem. Soc. 99(22), 7189 (1977)
- G. Zhang, X. Yang, C. He, P. Zhang, H. Mi, Constructing a tunable defect structure in TiO2 for photocatalytic nitrogen fixation. J. Mater. Chem. A 8(1), 334 (2020)
- E. Endoh, J.K. Leland, A.J. Bard, Heterogeneous photoreduction of nitrogen to ammonia on tungsten oxide. J. Phys. Chem 90(23), 6223 (1986)
- Q.S. Li, K. Domen, S. Naito, T. Onishi, K. Tamaru, Photocatalytic synthesis and photodecomposition of ammonia over SrTiO3 and BaTiO3 based catalysts. Chem. Lett. 12(3), 321 (1983)
- Y. Zhao, S. Zhou, J. Zhao, Y. Du, S.X. Dou, Control of photocarrier separation and recombination at bismuth oxyhalide interface for nitrogen fixation. J. Phys. Chem. Lett. 11(21), 9304 (2020)
- L. Yu, Z. Mo, X. Zhu, J. Deng, F. Xu, Y. Song, Y. She, H. Li, and H. Xu, Construction of 2D/2D Z-scheme MnO2-x/g-C3N4 photocatalyst for efficient nitrogen fixation to ammonia, Green Energy Environ. 6(4), 538 (2020)
- H. Gal, G. Alan, F. Frank A. et al., Potential economic feasibility of direct electrochemical nitrogen reduction as a route to ammonia, ACS Sustainable Chem. Eng. 8(24), 8938 (2020)
- M. Pourbaix, Atlas of electrochemical equilibria in aqueous solutions (National Association of Corrosion Engineers, Houston, Tex., 1974)
- L. Zhang, H.H. Mohamed, R. Dillert, D. Bahnemann, Kinetics and mechanisms of charge transfer processes in photocatalytic systems: a review. J. Photochem. Photobiol. C-Photochem. Rev. 13(4), 263 (2012)
- M.A. Lumley, A. Radmilovic, Y.J. Jang, A.E. Lindberg, K.S. Choi, Perspectives on the development of oxide-based photocathodes for solar fuel production. J. Am. Chem. Soc. 141(46), 18358 (2019)
- C. Lee, H. Kim, Y.J. Jang, Three phase boundary engineering using hydrophilic-hydrophobic poly(Nisopropylacrylamide) with oxygen-vacant TiO2 photocatalysts for photocatalytic N2 reduction. ACS Appl. Energy Mater. 5(9), 11018 (2022)
- F. Wu, Y. Yu, H. Yang et al., Simultaneous enhancement of charge separation and hole transportation in a TiO2-SrTiO3 core-shell nanowire photoelectrochemical system. Adv. Mater. 29(28), 1701432 (2017)
- B. Huang, Y. Liu, Q. Pang, X. Zhang, H. Wang, P.K. Shen, Boosting the photocatalytic activity of mesoporous SrTiO3 for nitrogen fixation through multiple defects and strain engineering. J. Mater. Chem. A 8(42), 22251 (2020)
- Z. Ying, S. Chen, S. Zhang, T. Peng, R. Li, Efficiently enhanced N2 photofixation performance of sea-urchin-like W18O49 microspheres with Mn-doping. Appl. Catal. B-Environ. 254, 351 (2019)
- P. Huang, W. Liu, Z. He et al., Single atom accelerates ammonia photosynthesis. Sci. China-Chem. 61(9), 1187 (2018)
- S. Hu, X. Chen, Q. Li, Y. Zhao, W. Mao, Effect of sulfur vacancies on the nitrogen photofixation performance of ternary metal sulfide photocatalysts. Catal. Sci. Technol. 6(15), 5884 (2016)
- D.S. Bhachu, S.J.A. Moniz, S. Sathasivam et al., Bismuth oxyhalides: synthesis, structure and photo-electrochemical activity. Chem. Sci. 7(8), 4832 (2016)
- J. Li, H. Li, G. Zhan, L. Zhang, Solar water splitting and nitrogen fixation with layered bismuth oxyhalides. Accounts Chem. Res. 50(1), 112 (2017)
- W.L. Huang, Electronic structures and optical properties of BiOX (X = F, Cl, Br, I) via DFT calculations. J. Comput. Chem. 30(12), 1882 (2009)
- S. Liu, S. Wang, Y. Jiang, Z. Zhao, G. Jiang, Z. Sun, Synthesis of Fe2O3 loaded porous g-C3N4 photocatalyst for photocatalytic reduction of dinitrogen to ammonia. Chem. Eng. J. 373, 572 (2019)
- R. Liu, Z. Chen, Y. Yao, Y. Li, W.A. Cheema, D. Wang, S. Zhu, Recent advancements in g-C3N4-based photocatalysts for photocatalytic CO2 reduction: a mini review. RSC Adv. 10(49), 29408 (2020)
- R. Shi, Y. Zhao, G.I.N. Waterhouse, S. Zhang, T. Zhang, Defect engineering in photocatalytic nitrogen fixation. ACS Catal. 9(11), 9739 (2019)
- Y.J. Jang, Y.B. Park, H.E. Kim, Y.H. Choi, S.H. Choi, J.S. Lee, Oxygen-intercalated CuFeO2 photocathode fabricated by hybrid microwave annealing for efficient solar hydrogen production. Chem. Mat. 28(17), 6054 (2016)
- J. Li, D. Wang, R. Guan, Y. Zhang, Z. Zhao, H. Zhai, Z. Sun, Vacancy-enabled mesoporous TiO2 modulated by nickel doping with enhanced photocatalytic nitrogen fixation performance. ACS Sustain. Chem. Eng. 8(49), 18258 (2020)
- Y. Zhao, Y. Zhao, R. Shi, B. Wang, G.I.N. Waterhouse, L.Z. Wu, C.H. Tung, T. Zhang, Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700 nm. Adv. Mater. 31(16), 1806482 (2019)
- M. Li, H. Huang, J. Low, C. Gao, R. Long, Y. Xiong, Recent progress on electrocatalyst and photocatalyst design for nitrogen reduction. Small Methods 3(6), 1800388 (2019)
- X. Xue, R. Chen, H. Chen et al., Oxygen vacancy engineering promoted photocatalytic ammonia synthesis on ultrathin two-dimensional bismuth oxybromide nanosheets. Nano Lett. 18(11), 7372 (2018)
- G. Dong, W. Ho, C. Wang, Selective photocatalytic N2 fixation dependent on g-C3N4 induced by nitrogen vacancies. J. Mater. Chem. A 3(46), 23435 (2015)
- H. Lee, J.-H. Lee, Y. Lee, E.-B. Cho, Y.J. Jang, Boosting solar-driven N2 to NH3 conversion using defect-engineered TiO2/CuO heterojunction photocatalyst, Applied Surface Science, 620, 156812 (2023)
- G. Zhang, X. Yuan, B. Xie, Y. Meng, Z. Ni, S. Xia, S vacancies act as a bridge to promote electron injection from Z-scheme heterojunction to nitrogen molecule for photocatalytic ammonia synthesis, Chemical Engineering Journal, 433(3), 133670 (2022)
- S. Liu, Y. Wang, S. Wang, M. You, S. Hong, T.-S. Wu, Y.-L. Soo, Z. Zhao, G. Jiang, B. Wang, Z. Sun, Photocatalytic fixation of nitrogen to ammonia by single Ru atom decorated TiO2 nanosheets. ACS Sustainable Chem. Eng. 7(7), 6813 (2019)
- X. Xue, R. Chen, C. Yan, Y. Hu, W. Zhang, S. Yang, L. Ma, G. Zhu, Z. Jin, Efficient photocatalytic nitrogen fixation under ambient conditions enabled by the heterojunctions of n-type Bi2MoO6 and oxygen-vacancy-rich p-type BiOBr. Nanoscale 11(21), 10439 (2019) https://doi.org/10.1039/C9NR02279A
- S. Choe, S.M. Kim, Y. Lee et al. Rational design of photocatalysts for ammonia production from water and nitrogen gas. Nano Converg. 8(22), (2021)
- S. Liu, M. Wang, H. Ji, L. Zhang, J. Ni, N. Li, T. Qian, C. Yan, J. Lu, Solvent-in-Gas System for Promoted Photocatalytic Ammonia Synthesis on Porous Framework Materials. Adv. Mater. 35(14), 2211730 (2023)
- Guan, Y., Wen, H., Cui, K. et al. Light-driven ammonia synthesis under mild conditions using lithium hydride. Nat. Chem. 16, 373-379 (2024) https://doi.org/10.1038/s41557-023-01395-8