DOI QR코드

DOI QR Code

The effect of magnetic field and inclined load on a poro-thermoelastic medium using the three-phase-lag model

  • Samia M. Said (Department of Mathematics, Faculty of Science, Zagazig University)
  • 투고 : 2024.02.20
  • 심사 : 2024.04.15
  • 발행 : 2024.05.10

초록

In the current work, a poro-thermoelastic half-space issue with temperature-dependent characteristics and an inclined load is examined in the framework of the three-phase-lag model (3PHL) while taking into account the effects of magnetic and gravity fields. The resulting coupled governing equations are non-dimensional and are solved by normal mode analysis. To investigate the impacts of the gravitational field, magnetic field, inclined load, and an empirical material constant, numerical findings are graphically displayed. MATLAB software is used for numerical calculations. Graphs are used to visualize and analyze the computational findings. It is found that the physical quantities are affected by the magnetic field, gravity field, the nonlocal parameter, the inclined load, and the empirical material constant.

키워드

과제정보

The authors thank Taif University Researchers Supporting Project Number (TURSP-2020/230), Taif University, Taif, Saudi Arabia.

참고문헌

  1. Abbas, I.A. (2015), "Generalized thermoelastic interaction in functional graded material with fractional order three-phase lag heat transfer", J. Cent. South Univ., 22, 1606-1613. https://doi.org/10.1007/s11771-015-2677-5.
  2. Abbas, I., Hobiny, A. and Marin, M. (2020), "Photo-thermal interactions in a semi-conductor material with cylindrical cavities and variable thermal conductivity", J. Taibah Univ. Sci., 14(1), 1369-1376. https://doi.org/10.1080/16583655.2020.1824465.
  3. Abd-Alla, A.M., Abo-Dahab, S.M. and Hammed, H.A.H. (2011), "Propagation of Rayleigh waves in generalized magneto-thermoelastic orthotropic material under initial stress and gravity field", Appl. Math. Model., 35(6), 2981-3000. https://doi.org/10.1016/j.apm.2010.11.067.
  4. Abouelregal, A.E. and Zenkour, A. (2016), "Generalized thermoelastic interactions due to an inclined load at a two-temperature half-space", J. Theor. Appl. Mech., 54(3), 827-838. https://doi.org/10.15632/jtam-pl.54.3.827.
  5. Ahmed, S.M. (2005), "Stoneley waves in a non-homogeneous orthotropic granular medium under the influence of gravity", Int. J. Math. Math. Sci., 19, 3145-3155. https://doi.org/10.1155/IJMMS.2005.3145.
  6. Alharbi, A.M. (2021), "Two temperature theory on a micropolar thermoelastic media with voids under the effect of inclined load via three-phase-lag model", ZAMM, 101(12), e202100078. https://doi.org/10.1002/zamm.202100078.
  7. Alharbi, A.M., Said, S.M. and Othman, M.I.A. (2021), "Effect of gravity on a magneto-thermoelastic porous medium with the frame of a memory-dependent derivative in the context of the 3PHL model", Steel Compos. Struct., 40(6), 881-891. https://doi.org/10.12989/scs.2021.40.6.881.
  8. Alzahrani, F.S. and Abbas, I.A. (2019), "Analytical estimations of temperature in a living tissue generated by laser irradiation using experimental data", J. Therm. Biol., 85, 102421. https://doi.org/10.1016/j.jtherbio.2019.102421.
  9. Biot, M.A. (1965), "Mechanics of Incremental Deformation", John Wiley & Sons, New York, NY, USA. https://hal.science/hal01352219.
  10. Biswas, S. (2021), "Rayleigh waves in porous orthotropic medium with phase lags", Struct. Eng. Mech., 80 (3), 265-274. https://doi.org/10.12989/sem.2021.80.3.265.
  11. Bromwich, T.J.J.A. (1898), "On the influence of gravity on elastic waves and in particular on the vibrations of an elastic globe", Proc. Lon. Math. Soc., 30 (1), 98-165. https://doi.org/10.1112/plms/s1-30.1.98.
  12. Ciarletta, M. and Scalia, A. (1993), "On the nonlinear theory of nonsimple thermoelastic materials with voids", ZAMM, 73(2), 67-75. https://doi.org/10.1002/zamm.19930730202.
  13. Choudhuri, S.K.R. (2007), "On thermoelastic three phase lag model", J. Therm. Stress., 30(3), 231-238. https://doi.org/10.1080/01495730601130919.
  14. Cowin, S.C. and Nunziato, J.W. (1973), "Linear elastic materials with voids", J. Elast., 13(7), 125-147. https://doi.org/10.1007/BF00041230.
  15. De, A., Purkait, P., Das, P. and Kanoria, M. (2023), "Effect of magnetic field and inclined load on a two-dimensional thermoelastic medium under gravity", J. Multi. Model., 14(3), 2350007. https://doi.org/10.1142/S1756973723500075.
  16. Deswal, S., Poonia, R. and Kalkal, K.K. (2020), " Disturbances in an initially stressed fiber-reinforced orthotropic thermoelastic medium due to inclined load", J. Braz. Soc. Mech. Sci. Eng., 42, 1-15. https://doi.org/10.1007/s40430-020-02338-x.
  17. Fahmy, M.A. (2011), "A time-stepping drbem for magneto-thermo-viscoelastic interactions in a rotating nonhomogeneous anisotropic solid", Int. J. Appl. Mech., 3(4), 711-734. https://doi.org/10.1142/S1758825111001202.
  18. Fahmy, M.A. (2018)," Shape design sensitivity and optimization for two-temperature generalized magneto-thermoelastic problems using time-domain DRBEM", J. Therm. Stress., 41(1), 119-138. https://doi.org/10.1080/01495739.2017.1387880.
  19. Fahmy, M.A. (2019a),"Design optimization for a simulation of rotating anisotropic viscoelastic porous structures using time-domain OQBEM", Math. Comp. Simul., 166, 193-205. https://doi.org/10.1016/j.matcom.2019.05.004.
  20. Fahmy, M.A. (2019b), "A new boundary element strategy for modeling and simulation of three-temperature nonlinear generalized micropolar-magneto-thermoelastic wave propagation problems in FGA structures", Eng. Anal. Bound. Elem., 108, 192-200. https://doi.org/10.1016/j.enganabound.2019.08.006.
  21. Fahmy, M.A. (2019c),"A new convolution variational boundary element technique for design sensitivity analysis and topology optimization of anisotropic thermo-poroelastic structures", Arab. J. Basic Appl. Sci., 27(1), 1-12. https://doi.org/10.1080/25765299.2019.1703493.
  22. Fahmy, M.A. (2021a), "A new BEM for fractional nonlinear generalized porothermoelastic wave propagation problems", Comp. Mater. Contin., 68(1), 59-76. https://doi.org/10.32604/Cmc.2021.015115.
  23. Fahmy, M.A., Shaw, S., Mondal, S., Abouelregal, A.E., Lotfy, K.H., Kudinov, I.A. and Soliman, A.H. (2021b), "Boundary element modeling for simulation and optimization of three-temperature anisotropic micropolar magneto-thermoviscoelastic problems in porous smart structures using NURBS and genetic algorithm", Int. J. Thermophys., 42, 29. https://doi.org/10.1007/s10765-020-02777-7.
  24. Fahmy, M.A., Alsulami, M.O. and Abouelregal, A.E. (2023), "Three-temperature boundary element modeling of ultrasound wave propagation in anisotropic viscoelastic porous media", Axioms, 12(5), 473. https://doi.org/10.3390/axioms12050473.
  25. Hetnarski, R.B. and Eslami, M.R. (2009), "Thermal stress-advanced theory and applications", (Springer Science Business Media, B.V., New York. https://link.springer.com/book/10.1007/978-1-4020-9247-3.
  26. Hobiny, A.D. and Abbas, I.A. (2020), "Fractional order thermoelastic wave assessment in a two-dimension medium with voids", Geomech. Eng., 21(1), 85-93. https://doi.org/10.12989/gae.2020.21.1.085.
  27. Hobiny, A. and Abbas, I. (2021a), "Analytical solutions of fractional bioheat model in a spherical tissue", Mech. Based. Des. Struct. Mach., 49(3), 430-439. https://doi.org/10.1080/15397734.2019.1702055.
  28. Iesan, D. (1986), "A theory of thermoelastic material with voids", Acta Mech., 60(6), 67-89. https://doi.org/10.1007/BF01302942.
  29. Jain, K., Kalkal, K.K. and Deswal, S. (2018), "Effect of heat source and gravity on a fractional order fiber reinforced thermoelastic medium", Struct. Eng. Mech., 68(2), 215-226. https://doi.org/10.12989/sem.2018.68.2.215.
  30. Kumar, R. and Rani, L. (2006), "Deformation due to moving loads in thermoelastic body with voids", Int. J. Appl. Mech. Eng., 11(1), 37-59. http://content.sciendo.com/view/journals/ijame/ijameoverview.xml.
  31. Kumar, R. and Aliwalia, P. (2007), "Interactions due to time harmonic inclined load in micropolar thermoelastic medium possesing cubic symmetry without energy dissipation", Sci. Eng. Compos. Mater. , 14(3), 229-240. https://www.degruyter.com › SECM.2007.14.3.229. https://doi.org/10.1515/SECM.2007.14.3.229
  32. Lata, P. and Singh, B. (2019a), "Effect of nonlocal parameter on nonlocal thermoelastic solid due to inclined load", Steel Compos. Struct., 33(1), 123-131. https://doi.org/10.12989/scs.2019.33.1.123.
  33. Lata P. and Kaur, I. (2019b), "Effect of rotation and inclined load on transversely isotropic magneto thermoelastic solid", Struct. Eng. Mech., 70 (2), 245-255. https://doi.org/10.12989/sem.2019.70.2.245.
  34. Lata, P. and Himanshi, H. (2022), "Inclined load effect in an orthotropic magneto-thermoelastic solid with fractional order heat transfer", Struct. Eng. Mech., 81(5), 529-537. https://doi.org/10.12989/sem.2022.81.5.529.
  35. Marin, M. (1996), "Some basic theorems in elastostatics of micropolar materials with voids", J. Comput. Appl. Math., 70(1), 115-126. https://doi.org/10.1016/0377-0427(95)00137-9.
  36. Marin, M. (1997), "On the domain of influence in thermoelasticity of bodies with voids", Arch. Math. (Brno)., 33(4), 301-308. http://dml.cz/dmlcz/107618. 107618
  37. Marin, M., Othman, M.I.A. and Abbas, I.A. (2015), "An extension of the domain of influence theorem for anisotropic thermoelastic material with voids", J. Comput. Theor. Nanosci., 12(8), 1594-1598. https://doi.org/10.1166/jctn.2015.3934
  38. Marin, M., Hobiny, A. and Abbas, I. (2021b), "The effects of fractional time derivatives in porothermoelastic materials using finite element method", Math., 9(14), 1606. https://doi.org/10.3390/math9141606.
  39. Marin, M., Seadawy, A., Vlase, S. and Chirila, A. (2022), "On mixed problem in thermos-elasticity of type III for Cosserat media", J. Taibah Univ. Sci., 16(1), 1264-1274. https://doi.org/10.1080/16583655.2022.21602.
  40. Nath, S. and Sengupta, P.R. (1999), "Influence of gravity on propagation of waves in a medium in presence of a compressional source", Sadhana, 24(12), 495-505. https://doi.org/10.1007/BF02745625.
  41. Nunziato, J.W. and Cowin, S.C. (1979), "A nonlinear theory of elastic materials with voids", Arch. Rat. Mech. Anal., 72(6), 175-201. https://doi.org/10.1007/BF00249363.
  42. Othman, M.I.A., Lotfy, K.H. and Farouk, R.M. (2009), "Effects of magnetic field and inclined load in micropolar thermoelastic medium possessing cubic symmetry under three theories", Int. J. Ind. Math., 1(2), 87-104. http://ijim.srbiau.ac.ir.
  43. Othman, M.I.A., Elmaklizi, Y.D. and Said, S.M. (2013), "Generalized thermoelastic medium with temperature dependent properties for different theories under the effect of gravity field", Int. J. Thermophys., 34(3), 521-537. https://doi.org/10.1007/s10765-013-1425-z.
  44. Othman, M.I.A., Fekry, M. and Marin, M. (2020), "Plane waves in generalized magneto-thermo-viscoelastic medium with voids under the effect of initial stress and laser pulse heating", Struct. Eng. Mech., 73 (6), 621-629. https://doi.org/10.12989/sem.2020.73.6.621.
  45. Quintanilla, R (2009), "Uniqueness in thermoelasticity of porous media with micro-temperatures", Arch. Mech., 61(5), 371-382. https://am.ippt.pan.pl/am/article/viewFile/v61p371/pdf.
  46. Said, S.M., Othman, M.I.A. and Eldemerdash, M.G. (2022), "A novel model on nonlocal thermoelastic rotating porous medium with memory-dependent derivative", Multi. Model. Mater. Struct., 18(5), 793-807. https://doi.org/10.1108/MMMS-05-2022-0085.
  47. Said, S.M., Abd-Elaziz, E.M. and Othman, M.I.A. (2023), "A modified couple-stress magneto-thermoelastic solid with microtemperatures and gravity field", Struct. Eng. Mech., 87(5), 475-485. https://doi.org/10.12989/sem.2023.87.5.475.
  48. Said, S.M. (2024), "Effect of the gravity on a nonlocal micropolar thermoelastic media with the multi-phase-lag model", Geomech. Eng., 36(1), 19-26. https://doi.org/10.12989/gae.2024.36.1.019.
  49. Sharma, N., Kumar, R. and Lata, P. (2015), "Disturbance due to inclined load in transversely isotropic thermoelastic medium with two temperatures and without energy dissipation", Mater. Phys. Mech., 22(2), 107-117. https://api.semanticscholar.org/CorpusID:201928700.
  50. Tantawy, R.M. and Zenkour, A.M. (2023), "Effects of porosity, rotation, thermomagnetic, and thickness variation on functionally graded tapered annular disks", Inf. Sci. Lett., 12(3), 1133-1150. https://doi.org/10.18576/isl/120305.
  51. Zenkour, A.M. (2020), "Wave propagation of a gravitated piezo-thermoelastic half-space via a refined multi-phase-lags theory", Mech. Adv. Mater. Struct., 27(22), 1923-1934. https://doi.org/10.1080/15376494.2018.1533057.