Acknowledgement
The authors thank Taif University Researchers Supporting Project Number (TURSP-2020/230), Taif University, Taif, Saudi Arabia.
References
- Abbas, I.A. (2015), "Generalized thermoelastic interaction in functional graded material with fractional order three-phase lag heat transfer", J. Cent. South Univ., 22, 1606-1613. https://doi.org/10.1007/s11771-015-2677-5.
- Abbas, I., Hobiny, A. and Marin, M. (2020), "Photo-thermal interactions in a semi-conductor material with cylindrical cavities and variable thermal conductivity", J. Taibah Univ. Sci., 14(1), 1369-1376. https://doi.org/10.1080/16583655.2020.1824465.
- Abd-Alla, A.M., Abo-Dahab, S.M. and Hammed, H.A.H. (2011), "Propagation of Rayleigh waves in generalized magneto-thermoelastic orthotropic material under initial stress and gravity field", Appl. Math. Model., 35(6), 2981-3000. https://doi.org/10.1016/j.apm.2010.11.067.
- Abouelregal, A.E. and Zenkour, A. (2016), "Generalized thermoelastic interactions due to an inclined load at a two-temperature half-space", J. Theor. Appl. Mech., 54(3), 827-838. https://doi.org/10.15632/jtam-pl.54.3.827.
- Ahmed, S.M. (2005), "Stoneley waves in a non-homogeneous orthotropic granular medium under the influence of gravity", Int. J. Math. Math. Sci., 19, 3145-3155. https://doi.org/10.1155/IJMMS.2005.3145.
- Alharbi, A.M. (2021), "Two temperature theory on a micropolar thermoelastic media with voids under the effect of inclined load via three-phase-lag model", ZAMM, 101(12), e202100078. https://doi.org/10.1002/zamm.202100078.
- Alharbi, A.M., Said, S.M. and Othman, M.I.A. (2021), "Effect of gravity on a magneto-thermoelastic porous medium with the frame of a memory-dependent derivative in the context of the 3PHL model", Steel Compos. Struct., 40(6), 881-891. https://doi.org/10.12989/scs.2021.40.6.881.
- Alzahrani, F.S. and Abbas, I.A. (2019), "Analytical estimations of temperature in a living tissue generated by laser irradiation using experimental data", J. Therm. Biol., 85, 102421. https://doi.org/10.1016/j.jtherbio.2019.102421.
- Biot, M.A. (1965), "Mechanics of Incremental Deformation", John Wiley & Sons, New York, NY, USA. https://hal.science/hal01352219.
- Biswas, S. (2021), "Rayleigh waves in porous orthotropic medium with phase lags", Struct. Eng. Mech., 80 (3), 265-274. https://doi.org/10.12989/sem.2021.80.3.265.
- Bromwich, T.J.J.A. (1898), "On the influence of gravity on elastic waves and in particular on the vibrations of an elastic globe", Proc. Lon. Math. Soc., 30 (1), 98-165. https://doi.org/10.1112/plms/s1-30.1.98.
- Ciarletta, M. and Scalia, A. (1993), "On the nonlinear theory of nonsimple thermoelastic materials with voids", ZAMM, 73(2), 67-75. https://doi.org/10.1002/zamm.19930730202.
- Choudhuri, S.K.R. (2007), "On thermoelastic three phase lag model", J. Therm. Stress., 30(3), 231-238. https://doi.org/10.1080/01495730601130919.
- Cowin, S.C. and Nunziato, J.W. (1973), "Linear elastic materials with voids", J. Elast., 13(7), 125-147. https://doi.org/10.1007/BF00041230.
- De, A., Purkait, P., Das, P. and Kanoria, M. (2023), "Effect of magnetic field and inclined load on a two-dimensional thermoelastic medium under gravity", J. Multi. Model., 14(3), 2350007. https://doi.org/10.1142/S1756973723500075.
- Deswal, S., Poonia, R. and Kalkal, K.K. (2020), " Disturbances in an initially stressed fiber-reinforced orthotropic thermoelastic medium due to inclined load", J. Braz. Soc. Mech. Sci. Eng., 42, 1-15. https://doi.org/10.1007/s40430-020-02338-x.
- Fahmy, M.A. (2011), "A time-stepping drbem for magneto-thermo-viscoelastic interactions in a rotating nonhomogeneous anisotropic solid", Int. J. Appl. Mech., 3(4), 711-734. https://doi.org/10.1142/S1758825111001202.
- Fahmy, M.A. (2018)," Shape design sensitivity and optimization for two-temperature generalized magneto-thermoelastic problems using time-domain DRBEM", J. Therm. Stress., 41(1), 119-138. https://doi.org/10.1080/01495739.2017.1387880.
- Fahmy, M.A. (2019a),"Design optimization for a simulation of rotating anisotropic viscoelastic porous structures using time-domain OQBEM", Math. Comp. Simul., 166, 193-205. https://doi.org/10.1016/j.matcom.2019.05.004.
- Fahmy, M.A. (2019b), "A new boundary element strategy for modeling and simulation of three-temperature nonlinear generalized micropolar-magneto-thermoelastic wave propagation problems in FGA structures", Eng. Anal. Bound. Elem., 108, 192-200. https://doi.org/10.1016/j.enganabound.2019.08.006.
- Fahmy, M.A. (2019c),"A new convolution variational boundary element technique for design sensitivity analysis and topology optimization of anisotropic thermo-poroelastic structures", Arab. J. Basic Appl. Sci., 27(1), 1-12. https://doi.org/10.1080/25765299.2019.1703493.
- Fahmy, M.A. (2021a), "A new BEM for fractional nonlinear generalized porothermoelastic wave propagation problems", Comp. Mater. Contin., 68(1), 59-76. https://doi.org/10.32604/Cmc.2021.015115.
- Fahmy, M.A., Shaw, S., Mondal, S., Abouelregal, A.E., Lotfy, K.H., Kudinov, I.A. and Soliman, A.H. (2021b), "Boundary element modeling for simulation and optimization of three-temperature anisotropic micropolar magneto-thermoviscoelastic problems in porous smart structures using NURBS and genetic algorithm", Int. J. Thermophys., 42, 29. https://doi.org/10.1007/s10765-020-02777-7.
- Fahmy, M.A., Alsulami, M.O. and Abouelregal, A.E. (2023), "Three-temperature boundary element modeling of ultrasound wave propagation in anisotropic viscoelastic porous media", Axioms, 12(5), 473. https://doi.org/10.3390/axioms12050473.
- Hetnarski, R.B. and Eslami, M.R. (2009), "Thermal stress-advanced theory and applications", (Springer Science Business Media, B.V., New York. https://link.springer.com/book/10.1007/978-1-4020-9247-3.
- Hobiny, A.D. and Abbas, I.A. (2020), "Fractional order thermoelastic wave assessment in a two-dimension medium with voids", Geomech. Eng., 21(1), 85-93. https://doi.org/10.12989/gae.2020.21.1.085.
- Hobiny, A. and Abbas, I. (2021a), "Analytical solutions of fractional bioheat model in a spherical tissue", Mech. Based. Des. Struct. Mach., 49(3), 430-439. https://doi.org/10.1080/15397734.2019.1702055.
- Iesan, D. (1986), "A theory of thermoelastic material with voids", Acta Mech., 60(6), 67-89. https://doi.org/10.1007/BF01302942.
- Jain, K., Kalkal, K.K. and Deswal, S. (2018), "Effect of heat source and gravity on a fractional order fiber reinforced thermoelastic medium", Struct. Eng. Mech., 68(2), 215-226. https://doi.org/10.12989/sem.2018.68.2.215.
- Kumar, R. and Rani, L. (2006), "Deformation due to moving loads in thermoelastic body with voids", Int. J. Appl. Mech. Eng., 11(1), 37-59. http://content.sciendo.com/view/journals/ijame/ijameoverview.xml.
- Kumar, R. and Aliwalia, P. (2007), "Interactions due to time harmonic inclined load in micropolar thermoelastic medium possesing cubic symmetry without energy dissipation", Sci. Eng. Compos. Mater. , 14(3), 229-240. https://www.degruyter.com › SECM.2007.14.3.229. https://doi.org/10.1515/SECM.2007.14.3.229
- Lata, P. and Singh, B. (2019a), "Effect of nonlocal parameter on nonlocal thermoelastic solid due to inclined load", Steel Compos. Struct., 33(1), 123-131. https://doi.org/10.12989/scs.2019.33.1.123.
- Lata P. and Kaur, I. (2019b), "Effect of rotation and inclined load on transversely isotropic magneto thermoelastic solid", Struct. Eng. Mech., 70 (2), 245-255. https://doi.org/10.12989/sem.2019.70.2.245.
- Lata, P. and Himanshi, H. (2022), "Inclined load effect in an orthotropic magneto-thermoelastic solid with fractional order heat transfer", Struct. Eng. Mech., 81(5), 529-537. https://doi.org/10.12989/sem.2022.81.5.529.
- Marin, M. (1996), "Some basic theorems in elastostatics of micropolar materials with voids", J. Comput. Appl. Math., 70(1), 115-126. https://doi.org/10.1016/0377-0427(95)00137-9.
- Marin, M. (1997), "On the domain of influence in thermoelasticity of bodies with voids", Arch. Math. (Brno)., 33(4), 301-308. http://dml.cz/dmlcz/107618. 107618
- Marin, M., Othman, M.I.A. and Abbas, I.A. (2015), "An extension of the domain of influence theorem for anisotropic thermoelastic material with voids", J. Comput. Theor. Nanosci., 12(8), 1594-1598. https://doi.org/10.1166/jctn.2015.3934
- Marin, M., Hobiny, A. and Abbas, I. (2021b), "The effects of fractional time derivatives in porothermoelastic materials using finite element method", Math., 9(14), 1606. https://doi.org/10.3390/math9141606.
- Marin, M., Seadawy, A., Vlase, S. and Chirila, A. (2022), "On mixed problem in thermos-elasticity of type III for Cosserat media", J. Taibah Univ. Sci., 16(1), 1264-1274. https://doi.org/10.1080/16583655.2022.21602.
- Nath, S. and Sengupta, P.R. (1999), "Influence of gravity on propagation of waves in a medium in presence of a compressional source", Sadhana, 24(12), 495-505. https://doi.org/10.1007/BF02745625.
- Nunziato, J.W. and Cowin, S.C. (1979), "A nonlinear theory of elastic materials with voids", Arch. Rat. Mech. Anal., 72(6), 175-201. https://doi.org/10.1007/BF00249363.
- Othman, M.I.A., Lotfy, K.H. and Farouk, R.M. (2009), "Effects of magnetic field and inclined load in micropolar thermoelastic medium possessing cubic symmetry under three theories", Int. J. Ind. Math., 1(2), 87-104. http://ijim.srbiau.ac.ir.
- Othman, M.I.A., Elmaklizi, Y.D. and Said, S.M. (2013), "Generalized thermoelastic medium with temperature dependent properties for different theories under the effect of gravity field", Int. J. Thermophys., 34(3), 521-537. https://doi.org/10.1007/s10765-013-1425-z.
- Othman, M.I.A., Fekry, M. and Marin, M. (2020), "Plane waves in generalized magneto-thermo-viscoelastic medium with voids under the effect of initial stress and laser pulse heating", Struct. Eng. Mech., 73 (6), 621-629. https://doi.org/10.12989/sem.2020.73.6.621.
- Quintanilla, R (2009), "Uniqueness in thermoelasticity of porous media with micro-temperatures", Arch. Mech., 61(5), 371-382. https://am.ippt.pan.pl/am/article/viewFile/v61p371/pdf.
- Said, S.M., Othman, M.I.A. and Eldemerdash, M.G. (2022), "A novel model on nonlocal thermoelastic rotating porous medium with memory-dependent derivative", Multi. Model. Mater. Struct., 18(5), 793-807. https://doi.org/10.1108/MMMS-05-2022-0085.
- Said, S.M., Abd-Elaziz, E.M. and Othman, M.I.A. (2023), "A modified couple-stress magneto-thermoelastic solid with microtemperatures and gravity field", Struct. Eng. Mech., 87(5), 475-485. https://doi.org/10.12989/sem.2023.87.5.475.
- Said, S.M. (2024), "Effect of the gravity on a nonlocal micropolar thermoelastic media with the multi-phase-lag model", Geomech. Eng., 36(1), 19-26. https://doi.org/10.12989/gae.2024.36.1.019.
- Sharma, N., Kumar, R. and Lata, P. (2015), "Disturbance due to inclined load in transversely isotropic thermoelastic medium with two temperatures and without energy dissipation", Mater. Phys. Mech., 22(2), 107-117. https://api.semanticscholar.org/CorpusID:201928700.
- Tantawy, R.M. and Zenkour, A.M. (2023), "Effects of porosity, rotation, thermomagnetic, and thickness variation on functionally graded tapered annular disks", Inf. Sci. Lett., 12(3), 1133-1150. https://doi.org/10.18576/isl/120305.
- Zenkour, A.M. (2020), "Wave propagation of a gravitated piezo-thermoelastic half-space via a refined multi-phase-lags theory", Mech. Adv. Mater. Struct., 27(22), 1923-1934. https://doi.org/10.1080/15376494.2018.1533057.