DOI QR코드

DOI QR Code

The effect of in-situ stress parameters and metamorphism on the geomechanical and mineralogical behavior of tunnel rocks

  • Kadir Karaman (Department of Mining Eng., Karadeniz Technical University)
  • 투고 : 2023.05.24
  • 심사 : 2024.04.03
  • 발행 : 2024.05.10

초록

Determination of jointed rock mass properties plays a significant role in the design and construction of underground structures such as tunneling and mining. Rock mass classification systems such as Rock Mass Rating (RMR), Rock Mass Index (RMi), Rock Mass Quality (Q), and deformation modulus (Em) are determined from the jointed rock masses. However, parameters of jointed rock masses can be affected by the tunnel depth below the surface due to the effect of the in situ stresses. In addition, the geomechanical properties of rocks change due to the effect of metamorphism. Therefore, the main objective of this study is to apply correlation analysis to investigate the relationships between rock mass properties and some parameters related to the depth of the tunnel studied. For this purpose, the field work consisted of determining rock mass parameters in a tunnel alignment (~7.1 km) at varying depths from 21 m to 431 m below ground surface. At the same excavation depths, thirty-seven rock types were also sampled and tested in the laboratory. Correlations were made between vertical stress and depth, horizontal/vertical stress ratio (k) and depth, k and Em, k and RMi, k and point load index (PLI), k and Brazilian tensile strength (BTS), Em and uniaxial compressive strength (UCS), UCS and PLI, UCS and BTS. Relationships were significant (significance level=0.000) at the confidence interval of 95% (r = 0.77-0.88) between the data pairs for the rocks taken from depths greater than 166 m where the ratio of horizontal to vertical stress is between 0.6 and 1.2. The in-situ stress parameters affected rock mass properties as well as metamorphism which affected the geomechanical properties of rock materials by affecting the behavior of minerals and textures within rocks. This study revealed that in-situ stress parameters and metamorphism should be reviewed when tunnel studies are carried out.

키워드

과제정보

The author is grateful to Prof. Dr. Ayhan Kesimal, Prof. Dr. Bayram Ercikdi, and Assoc. Prof. Dr. Ferdi Cihangir for providing help during the laboratory studies, Assoc. Prof. Dr. Hasan Kolayli for the geological evaluation, and Geology Engineer Serkan Demirel for the field study.

참고문헌

  1. Abioye, A.V. (2015), "Increasing effect of metamorphism on rock properties", Int. J. Min. Sci. Technol., 25(2), 205-211. http://dx.doi.org/10.1016/j.ijmst.2015.02.007. 
  2. Abdou, M. and Mahmoud, A.N. (2013), "Correlation of sandstone rock properties obtained from field and laboratory tests", Int. J. Civil Struct. Eng., 4(1), 1-11. 
  3. Anagnostou, G.A. (1993), "Model for swelling rock in tunneling", Rock Mech. Rock Eng., 4, 307-331. https://doi.org/10.1007/BF01027115. 
  4. Banihashemigargari, E. and Rezaeifarei, A.H. (2023), "Mechanized tunnels lining prefabricated segments production methods", Geomech. Eng., 32(5), 503-512. https://doi.org/10.12989/gae.2023.32.5.503 
  5. Barton, N.R. (2002), "Some new Q-value correlations to assist in site characterization and tunnel design", Int. J. Rock Mech. Mining Sci., 39(1), 185-216. https://doi.org/10.1016/S1365-1609(02)00011-4 
  6. Barton, N., Lien, R. and Lunde, J. (1974), "Engineering classification of rock masses for the design of tunnel support", Rock Mech., 6, 189-239. https://doi.org/10.1007/BF01239496. 
  7. Bieniawski, Z.T. (1989), "Engineering rock mass classifications. In: A complete manual for engineers and geologists in mining", Civil and Petroleum Engineering. Wiley, New York. 
  8. Bieniawski, Z.T. (1989), "Engineering rock mass classifications", New York: Wiley 
  9. Bird, J. (1942), "Rock bursts" - a symposium, AIME, Technical paper no: 1468. May. 
  10. Brown, E.T. and Hoek, E. (1978), "Trends in relationships between measured in-situ stresses and depth", Int. J. Rock Mech. Mining Sci., Geomech Abs., 15, 211-215. 
  11. Bulut, F. and Tarhan, F. (1992), "Geomechanical properties of foundation rock of the C ambasi (Trabzon-C aykara) dam site (in Turkish)", Geol. Eng., 41,138-145. 
  12. Chen, C.H. Wang, T.T. Jeng, F.S. and Huang, T.H. (2012), "Mechanisms causing seismic damage of tunnels at different depths", Tunn. Undergr. Sp. Tech., 28, 31-40. https://doi.org/10.1016/j.tust.2011.09.001. 
  13. Chen, L. Pei, W. Yang, Y. and Guo, W. (2022), "Three-dimensional numerical parametric study of shape effects on multiple tunnel interactions", Geomech. Eng., 31(3), 237-248. https://doi.org/10.12989/gae.2022.31.3.237. 
  14. Chun, B.S., Ryu W.R., Sagong, M. and Do, J.N. (2009), "Indirect estimation of the rock deformation modulus based on polynomial and multiple regression analyses of the RMR system", Int. J. Rock Mech. Mining Sci., 46(3), 649-658. https://doi.org/10.1016/j.ijrmms.2008.10.001. 
  15. Corkum, A.G., Damjanac, B. and Lam, T. (2018), "Variation of horizontal in situ stress with depth for long-term performance evaluation of the Deep Geological Repository project access shaft", Int. J. Rock Mech. Mining Sci., 107, 75-85. https://doi.org/10.1016/j.ijrmms.2018.04.035. 
  16. Franklin, J.A. (1970), "Classification of rock according to its mechanical properties", Ph.D. Dissertation, University of London Imperial College, London, U.K 
  17. Gurocak, Z. (2011), "Analyses of stability and support design for a diversion tunnel at the Kapikaya Dam Site, Turkey", Bull Eng. Geol. Env., 70, 41-52. https://doi.org/10.1007/s10064-009-0258-2 
  18. Herget, G. (1988), "Stresses in rock", Rotterdam: Balkema
  19. Hoek, E. and Diederichs, M.S. (2006), "Empirical estimation of rock mass modulus", Int. J. Rock Mech. Min. Sci., 43(2), 203-215. https://doi.org/10.1016/j.ijrmms.2005.06.005. 
  20. ISRM. (2007), "The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 1974-2006", In: Ulusay, Hudson (Eds.), Suggested Methods Prepared by the Commission on Testing Methods, International Society for Rock Mechanics. ISRM Turkish National Group, Ankara, Turkey. 
  21. Jiang, X.W., Wan, L., Wang, X.S., Liang, S.H.X. and Hu, B. (2009), "Estimation of fracture normal stiffness using a transmissivity-depth correlation", Int. J. Rock Mech. Min. Sci., 46(1), 51-58. https://doi.org/10.1016/j.ijrmms.2008.03.007. 
  22. Kahraman, S. (2001), "Evaluation of simple methods for assessing the uniaxial compressive strength of rock", Int. J. Rock Mech. Min. Sci., 38(7), 981-994. https://doi.org/10.1016/S1365-1609(01)00039-9. 
  23. Kang, S.J., Lee, M., An, J.B., Lee, D.H. and Cho, G.C. (2023), "Dynamic behavior of submerged floating tunnels at the shore connection considering the use of flexible joints", Geomech. Eng., 33(1), 101-112. https://doi.org/10.12989/gae.2023.33.1.101. 
  24. Karaman, K., Ercikdi, B. and Kesimal, A. (2013), "The assessment of slope stability and rock excavatability in a limestone quarry", Earth Sci. Res. J., 17(2), 169-181. 
  25. Karaman, K. and Kesimal, A. (2015a), "Evaluation of the influence of porosity on the engineering properties of volcanic rocks from the Eastern Black Sea Region: NE Turkey", Arab. J. Geosci., 8, 557-564. https://doi.org/10.1007/s12517-013-1217-6. 
  26. Karaman, K. and Kesimal, A. (2015b), "Correlation of Schmidt rebound hardness with uniaxial compressive strength and Pwave velocity of rock materials", Arab. J. Sci. Eng., 40, 1897-1906. https://doi.org/10.1007/s13369-014-1510-z. 
  27. Karaman, K., Cihangir, F. and Kesimal, A. (2015), "A comparative assessment of rock mass deformation modulus", Int. J. Min. Sci. Tech., 25, 735-740. http://dx.doi.org/10.1016/j.ijmst.2015.07.006. 
  28. Karaman, K. and Bakhytzhan, A. (2020), "Prediction of concrete strength from rock properties at the preliminary design stage", Geomech. Eng., 23(2), 115-125. https://doi.org/10.12989/gae.2020.23.2.115. 
  29. Karaman, K., Alp, I., Kesimal, A. and Yilmaz, A.O. (2019), "Investigation of the relationships between compressive strength and some physical parameters of pyrite containing rocks", AKU-FEMUBID, 19(1), 248-255. http://dx.doi.org/10.35414/akufemubid.476920. 
  30. Ketin, I. (1966), "Tectonic units of Anatolia", Bull. Mineral Res. Exp. Ins. Turkey, 66, 22-34. 
  31. Kim, J.W. Chong, S.H. and Cho, G.C. (2022), "Probabilistic Q-system for rock classification considering shear wave propagation in jointed rock mass", Geomech. Eng., 30(5), 449-460. https://doi.org/10.12989/gae.2022.30.5.449. 
  32. Min, K.B., Rutqvist, J., Tsang, C.F. and Jing, L. (2004), "Stress-dependent permeability of fractured rock masses: A numerical study", Int. J. Rock Mech. Min. Sci., 41(7), 1191-1210. https://doi.org/ 10.1016/j.ijrmms.2004.05.005. 
  33. Moomivand, H., Moosazadeh, S. and Gilani, S. (2022), "A new empirical approach to estimate the ratio of horizontal to vertical in-situ stress and evaluation of its effect on the stability analysis of underground spaces", Rudarsko-Geolosko-Naftni Zbornik, 37(3), 97-107. https://doi.org/10.17794/rgn.2022.3.8. 
  34. Palmstrom, A. (1995), "RMi-A rock mass characterization system for rock engineering purposes", PhD. Thesis, University of Oslo, Norway. 
  35. Parker, J. (1966), "Mining in a lateral stress field at White Pine", Canadian Ins. Mining Metall. Trans., Vol. LXIX, 375-383. 
  36. Sharma, S. and Judd, W.R. (1991), "Underground opening damage from earthquakes", Eng. Geol., 30(3-4), 263-276. https://doi.org/10.1016/0013-7952(91)90063-Q. 
  37. Sheorey, P.R. (1994), "A theory for in-situ stresses in isotropic and transversely isotropic rock", Int. J. Rock Mech. Min. Sci. Geomech. Abs., 31, 23 -34. https://doi.org/10.1016/0148-9062(94)92312-4. 
  38. Singh, B., Goel, R.K., Jethwa, J.L. and Dude, A.K. (1997), "Support pressure assessment in arched underground openings through poor rock masses", Eng. Geol., 48(1-2), 59-81. https://doi.org/10.1016/S0013-7952(97)81914-X. 
  39. Sklyarov, E.V., Lavrenchuk, A.V., Fedorovsky, V.S., Gladkochub, D.P., Donskaya, T.V., Kotov, A.B., Mazukabzov, A.M. and Starikova, A.E. (2020), "Regional, contact metamorphism, and autometamorphism of the Olkhon Terrane (West Baikal Area)", Petrology, 28, 47-61. https://doi.org/10.1134/S0869591120010051. 
  40. Tugrul, A. and Zarif, I.H. (1999), "Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey", Eng. Geol., 51(4), 303-317. https://doi.org/10.1016/S0013-7952(98)00071-4. 
  41. Verman, M., Singh, B., Viladkar, M.N. and Jethwa, J.L. (1997), "Effect of tunnel depth on modulus of deformation of rock mass", Rock Mech. Rock Eng., 30(3), 121-127. 
  42. Wang, X.S., Jiang, X.W., Wan, L., Song, G. and Xia, Q. (2009), "Evaluation of depth-dependent porosity and bulk modulus of a shear using permeability-depth trends", Int. J. Rock Mech. Min. Sci., 46, 1175-1181. https://doi.org/10.1016/j.ijrmms.2009.02.002. 
  43. Yagiz, S. (2009), "Predicting uniaxial compressive strength, modulus of elasticity and index properties of rocks using the Schmidt hammer", Bull. Eng. Geol. Environ., 68, 55-63. https://doi.org/10.1007/s10064-008-0172-z. 
  44. Yan, J., Cui, Y. and Liu, X. (2023), "Evolution of contact metamorphic rocks in the Zhoukoudian Area: evidence from phase equilibrium modelling", Minerals, 13, 1056. https://doi.org/10.3390/min13081056. 
  45. Zhao, Z., Jing, H., Shi, X., Yang, L., Yin, Q. and Gao, Y. (2021), "Study on bearing characteristic of rock mass with different structures: physical modeling", Geomech. Eng., 25(3),179-194. https://doi.org/10.12989/gae.2021.25.3.179. 
  46. Zhou, J. and Yang, X.A. (2021), "Deformation behavior analysis of tunnels opened in various rock mass grades conditions in China", Geomech. Eng., 26(2), 191-204. https://doi.org/10.12989/gae.2021.26.2.191.