Acknowledgement
The authors are grateful to the referee for the careful checking of this article and some helpful comments.
References
- M. Auslander and M. Bridger, Stable module theory, Memoirs of the American Mathematical Society, No. 94, Amer. Math. Soc., Providence, RI, 1969.
- D. Bennis and K. Ouarghi, X?????-Gorenstein projective modules, Int. Math. Forum 5 (2010), no. 9-12, 487-491.
- D. Bravo and J. Gillespie, Absolutely clean, level, and Gorenstein AC-injective complexes, Comm. Algebra 44 (2016), no. 5, 2213-2233. https://doi.org/10.1080/00927872.2015.1044100
- D. Bravo, J. Gillespie, and M. Hovey, The stable module category of a general ring, arXiv:1405.5768, 2014.
- N. Ding, Y. Li, and L. Mao, Strongly Gorenstein flat modules, J. Aust. Math. Soc. 86 (2009), no. 3, 323-338. https://doi.org/10.1017/S1446788708000761
- E. E. Enochs and J. R. Garc'ia Rozas, Gorenstein injective and projective complexes, Comm. Algebra 26 (1998), no. 5, 1657-1674. https://doi.org/10.1080/00927879808826229
- E. E. Enochs and O. M. G. Jenda, Gorenstein injective and projective modules, Math. Z. 220 (1995), no. 4, 611-633. https://doi.org/10.1007/BF02572634
- E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, De Gruyter Expositions in Mathematics, 30, Walter de Gruyter & Co., Berlin, 2000.
- E. E. Enochs, O. M. G. Jenda, and B. Torrecillas, Gorenstein flat modules, Nanjing Daxue Xuebao Shuxue Bannian Kan 10 (1993), no. 1, 1-9.
- Z. Gao, X. Ma, and T. Zhao, Gorenstein weak injective modules with respect to a semidualizing bimodule, J. Korean Math. Soc. 55 (2018), no. 6, 1389-1421. https://doi.org/10.4134/JKMS.j170718
- Z. Gao and F. Wang, Weak injective and weak flat modules, Comm. Algebra 43 (2015), no. 9, 3857-3868. https://doi.org/10.1080/00927872.2014.924128
- Z. Gao and T. Zhao, Foxby equivalence relative to C-weak injective and C-weak flat modules, J. Korean Math. Soc. 54 (2017), no. 5, 1457-1482. https://doi.org/10.4134/JKMS.j160528
- J. R. Garcia Rozas, Covers and envelopes in the category of complexes of modules, Chapman & Hall/CRC Research Notes in Mathematics, 407, Chapman & Hall/CRC, Boca Raton, FL, 1999.
- Y. Geng and N. Ding, W-Gorenstein modules, J. Algebra 325 (2011), 132-146. https://doi.org/10.1016/j.jalgebra.2010.09.040
- J. Gillespie, The flat model structure on Ch(R), Trans. Amer. Math. Soc. 356 (2004), no. 8, 3369-3390. https://doi.org/10.1090/S0002-9947-04-03416-6
- R. Gobel and J. Trlifaj, Approximations and endomorphism algebras of modules, De Gruyter Expositions in Mathematics, 41, Walter de Gruyter, Berlin, 2006. https://doi.org/10.1515/9783110199727
- H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra 189 (2004), no. 1-3, 167-193. https://doi.org/10.1016/j.jpaa.2003.11.007
- H. Holm and P. Jorgensen, Semi-dualizing modules and related Gorenstein homological dimensions, J. Pure Appl. Algebra 205 (2006), no. 2, 423-445. https://doi.org/10.1016/j.jpaa.2005.07.010
- H. Holm and D. White, Foxby equivalence over associative rings, J. Math. Kyoto Univ. 47 (2007), no. 4, 781-808. https://doi.org/10.1215/kjm/1250692289
- J. Hu and A. Xu, On stability of F-Gorenstein flat categories, Algebra Colloq. 23 (2016), no. 2, 251-262. https://doi.org/10.1142/S1005386716000286
- J. Hu and D. Zhang, Weak AB-context for FP-injective modules with respect to semidualizing modules, J. Algebra Appl. 12 (2013), no. 7, 1350039, 17 pp. https://doi.org/10.1142/S0219498813500394
- Z. Huang, Proper resolutions and Gorenstein categories, J. Algebra 393 (2013), 142-169. https://doi.org/10.1016/j.jalgebra.2013.07.008
- F. Kong and P. Zhang, From CM-finite to CM-free, J. Pure Appl. Algebra 220 (2016), no. 2, 782-801. https://doi.org/10.1016/j.jpaa.2015.07.016
- L. Liang, N. Ding, and G. Yang, Some remarks on projective generators and injective cogenerators, Acta Math. Sin. (Engl. Ser.) 30 (2014), no. 12, 2063-2078. https://doi.org/10.1007/s10114-014-3227-z
- Z. Liu, Z. Huang, and A. Xu, Gorenstein projective dimension relative to a semidualizing bimodule, Comm. Algebra 41 (2013), no. 1, 1-18. https://doi.org/10.1080/00927872.2011.602782
- B. H. Maddox, Absolutely pure modules, Proc. Amer. Math. Soc. 18 (1967), 155-158. https://doi.org/10.2307/2035245
- L. Mao and N. Ding, Relative FP-projective modules, Comm. Algebra 33 (2005), no. 5, 1587-1602. https://doi.org/10.1081/AGB-200061047
- L. Mao and N. Ding, Gorenstein FP-injective and Gorenstein flat modules, J. Algebra Appl. 7 (2008), no. 4, 491-506. https://doi.org/10.1142/S0219498808002953
- F. Meng and Q. X. Pan, X?????-Gorenstein projective and Y?????-Gorenstein injective modules, Hacet. J. Math. Stat. 40 (2011), no. 4, 537-554.
- S. Sather-Wagstaff, T. Sharif, and D. White, Stability of Gorenstein categories, J. Lond. Math. Soc. (2) 77 (2008), no. 2, 481-502. https://doi.org/10.1112/jlms/jdm124
- B. Stenstrom, Coherent rings and F P-injective modules, J. London Math. Soc. (2) 2 (1970), 323-329. https://doi.org/10.1112/jlms/s2-2.2.323
- D. White, Gorenstein projective dimension with respect to a semidualizing module, J. Commut. Algebra 2 (2010), no. 1, 111-137. https://doi.org/10.1216/JCA-2010-2-1-111
- D. Xin, J. Chen, and X. Zhang, Completely W?????-resolved complexes, Comm. Algebra 41 (2013), no. 3, 1094-1106. https://doi.org/10.1080/00927872.2011.630707
- G. Yang, Gorenstein projective, injective and flat complexes, Acta Math. Sinica (Chinese Ser.) 54 (2011), no. 3, 451-460.
- X. Yang, Gorenstein categories 𝒢(𝒳, 𝑦, Z?????) and dimensions, Rocky Mountain J. Math. 45 (2015), no. 6, 2043-2064. https://doi.org/10.1216/RMJ-2015-45-6-2043
- X. Yang and W. Chen, Relative homological dimensions and Tate cohomology of complexes with respect to cotorsion pairs, Comm. Algebra 45 (2017), no. 7, 2875-2888. https://doi.org/10.1080/00927872.2016.1233226
- X. Yang and N. Ding, On a question of Gillespie, Forum Math. 27 (2015), no. 6, 3205- 3231. https://doi.org/10.1515/forum-2013-6014
- C. Yang and L. Liang, Gorenstein injective and projective complexes with respect to a semidualizing module, Comm. Algebra 40 (2012), no. 9, 3352-3364. https://doi.org/10.1080/00927872.2011.568030
- G. Yang and Z. Liu, Cotorsion pairs and model structures on Ch(R), Proc. Edinb. Math. Soc. (2) 54 (2011), no. 3, 783-797. https://doi.org/10.1017/S0013091510000489
- X. Yang and Z. Liu, Gorenstein projective, injective, and flat complexes, Comm. Algebra 39 (2011), no. 5, 1705-1721. https://doi.org/10.1080/00927871003741497
- G. Yang, Z. Liu, and L. Liang, Model structures on categories of complexes over Ding-Chen rings, Comm. Algebra 41 (2013), no. 1, 50-69. https://doi.org/10.1080/00927872.2011.622326
- D. Zhang and B. Ouyang, Semidualizing modules and related modules, J. Algebra Appl. 10 (2011), no. 6, 1261-1282. https://doi.org/10.1142/S0219498811005695
- C. Zhang, L. Wang, and Z. Liu, Ding projective modules with respect to a semidualizing module, Bull. Korean Math. Soc. 51 (2014), no. 2, 339-356. https://doi.org/10.4134/BKMS.2014.51.2.339
- C. Zhang, L. Wang, and Z. Liu, Ding projective modules with respect to a semidualizing bimodule, Rocky Mountain J. Math. 45 (2015), no. 4, 1389-1411. https://doi.org/10.1216/RMJ-2015-45-4-1389
- R. Zhao and N. Ding, (W?????, Y?????, X?????)-Gorenstein complexes, Comm. Algebra 45 (2017), no. 7, 3075-3090. https://doi.org/10.1080/00927872.2016.1235173
- R. Zhao and Y. Li, A unified approach to various Gorenstein modules, Rocky Mountain J. Math. 52 (2022), no. 6, 2229-2246. https://doi.org/10.1216/rmj.2022.52.2229
- R. Zhao and P. Ma, Gorenstein projective complexes with respect to cotorsion pairs, Czechoslovak Math. J. 69(144) (2019), no. 1, 117-129. https://doi.org/10.21136/CMJ.2018.0194-17
- R. Zhao and W. Ren, 𝒱𝒲-Gorenstein complexes, Turkish J. Math. 41 (2017), no. 3, 537-547. https://doi.org/10.3906/mat-1603-88
- G. Zhao and J. Sun, 𝒱𝒲-Gorenstein categories, Turkish J. Math. 40 (2016), no. 2, 365-375. https://doi.org/10.3906/mat-1502-37