DOI QR코드

DOI QR Code

H13 강의 템퍼링 조건에 따른 템퍼링 거동 및 기계적 물성 효과

Effect of tempering conditions on the tempering behavior and mechanical properties of tempered H13 steel

  • 권기훈 (한국생산기술연구원 지능화뿌리기술연구소 주문형생산연구부문) ;
  • 최병호 (한국생산기술연구원 지능화뿌리기술연구소 주문형생산연구부문) ;
  • 손윤호 ((주) 유진 SMC ) ;
  • 이영국 (연세대학교 신소재공학과) ;
  • 문경일 (한국생산기술연구원 지능화뿌리기술연구소 주문형생산연구부문)
  • Gi-Hoon Kwon (Heat & Surface Technology R&D Group, Korea Institute of Industrial Technology) ;
  • Byoungho Choi (Heat & Surface Technology R&D Group, Korea Institute of Industrial Technology) ;
  • Yoon-Ho Son (Yujin SMC Co.) ;
  • Young-Kook Lee (Department of Materials Science and Engineering, Yonsei University) ;
  • Kyoungil Moon (Heat & Surface Technology R&D Group, Korea Institute of Industrial Technology)
  • 투고 : 2024.04.15
  • 심사 : 2024.04.23
  • 발행 : 2024.04.30

초록

Tempering behavior and mechanical properties in AISI H13 steel, quenched and tempered from 300 ℃ to 700 ℃ for different tempering time (1, 2, 5, 10, 20 hr) were quantitatively investigated by scanning electron microscopy (SEM), x-ray diffractometer (XRD), impact test machine, rockwell apparatus, ball-on-disk tester. Under the condition that the tempering time is 2 hours, the hardness increases slightly as the tempering temperature increases, but decreases rapidly when the tempering temperature exceeds 500 ℃, while the impact energy increases in proportion to the tempering temperature. Friction tests were conducted in dry condition with a load of 30 N, and the friction coefficient and wear rate according to tempering conditions were measured to prove the correlation with hardness and microstructure. In addition, primary tempering from 300 ℃ to 700 ℃ was performed at various times to establish a kinetic model to predict hardness under specific tempering conditions.

키워드

과제정보

본 연구는 한국산업단지공단 (KICOX)의 재원으로 경기 반월시화 스마트그린 산업단지 공정혁신 시뮬레이션센터 구축 및 운영 사업의 지원을 받아 수행한 연구입니다 (No: SG20230101).

참고문헌

  1. Y.G. Zhao, Y.H. Liang, W. Zhou, Q.D. Qin, Q. C. Jiang, Effect of current pulse on the thermal fatigue behavior of cast hot work die steel, ISIJ international, 45 (2005) 410-412.  https://doi.org/10.2355/isijinternational.45.410
  2. J.Y. Li, Y.L. Chen, J.H. Huo, Mechanism of improvement on strength and toughness of H13 die steel by nitrogen, Materials Science and Engineering: A, 640 (2015) 16-23.  https://doi.org/10.1016/j.msea.2015.05.006
  3. X. Zhu, K. Zhang, W. Li, X. Jin, Effect of retained austenite stability and morphology on the hydrogen embrittlement susceptibility in quenching and partitioning treated steels, Materials Science and Engineering: A, 658 (2016) 400-408.  https://doi.org/10.1016/j.msea.2016.02.026
  4. Y. Wang, K. Song, Y. Zhang, High-temperature softening mechanism and kinetic of 4Cr5MoSiV1 steel during tempering, Materials Research Express, 6 (2019) 096513. 
  5. N. Mebarki, D. Delagnes, P. Lamesle, F. Delmas, C. Levaillant, Relationship between microstructure and mechanical properties of a 5% Cr tempered martensitic tool steel, Materials Science and Engineering: A, 387 (2004) 171-175. 
  6. O. Barrau, C. Boher, R. Gras, F.R. Aria, Analysis of the friction and wear behaviour of hot work tool steel for forging, Wear, 255 (2003) 1444-1454.  https://doi.org/10.1016/S0043-1648(03)00280-1
  7. L.H.S. Luong, T. Heijkoop, The influence of scale on friction in hot metal Working, Wear, 71 (1981) 93-102.  https://doi.org/10.1016/0043-1648(81)90142-3
  8. Z. Y. Zhu, Data of hot working die steels, Mechanical Engineering Materials, 25 (2001) 36-40. 
  9. M. Sawa, D.A. Rigney, Sliding behavior of dual-phase steels in vacuum and air, Wear, 119 (1987) 369-390.  https://doi.org/10.1016/0043-1648(87)90042-1
  10. Y. Wang, T.Q. Lei, J.J. Liu, Tribo-metallographic behavior of high carbon steels in dry sliding II, Wear, 231 (1999) 12-19.  https://doi.org/10.1016/S0043-1648(99)00116-7
  11. X.H. Cui, S.Q. Wang, M.X. Wei, Z.R. Yang, Wear characteristics of H13 steel with various tempered structures, Journal of Materials Engineering and Performance, 20 (2011) 1055-1062.  https://doi.org/10.1007/s11665-010-9723-0
  12. N.B. Dhokey, S.S. Maske, P. Ghosh, Effect of tempering and cryogenic treatment on wear and mechanical properties of hot work tool steel, Materials Today: Proceedings, 43 (2021) 3006-3013.  https://doi.org/10.1016/j.matpr.2021.01.361
  13. Z.Q. Cui, Y.C. Tan, Metal Science and Heat Treatment, Metallography and Heat Treatment, Machinery Industry Press: Beijing, (2008) 268-277. 
  14. W. Q. Zhang, Phase transformation in solid metals and alloys, National defense Industry Press: Beijing, (2015), 95-102. 
  15. A. Medvedeva, J. Bergstrob, S. Gunnarssona, J. Anderssona, High-temperature properties and microstructural stability of hot-work tool steels, Materials Science and Engineering: A, 52 (2009) 39-46. 
  16. A. Ning, Y. Liu, R. Gao, S. Yue, M. Wang, H. Guo, Effect of tempering condition on microstructure, mechanical properties and precipitates in AISI H13 steel, JOM, 73 (2021) 2194-2202.  https://doi.org/10.1007/s11837-021-04694-y
  17. A. Ning, S. Yue, R. Gao, L. Li, H. Guo, H, Influence of tempering time on the behavior of large carbides' coarsening in AISI H13 steel, Metals, 9(12) (2019) 1283. 
  18. P. Michaud, D. Delagnes, P. Lamesle, M. H. Mathon, C. Levaillant, The effect of the addition of alloying elements on carbide precipitation and mechanical properties in 5% chromium martensitic steels, ACTA materialia, 55 (2007) 4877-4889.  https://doi.org/10.1016/j.actamat.2007.05.004
  19. D.K. Prajapati, M. Tiwari, The correlation between friction coefficient and areal topography parameters for AISI 304 steel sliding against AISI 52100 steel, Friction, 9 (2021) 41-60.  https://doi.org/10.1007/s40544-019-0323-1
  20. E. Guenther, M. Kahlert, M. Vollmer, T. Niendorf, C. Greiner, Tribological performance of additively manufactured aisi H13 steel in different surface conditions, Materials, 14 (2021) 928. 
  21. J.F. Archard, Contact and rubbing of flat surfaces, Journal of Applied Physics, 24 (1953) 981-988.  https://doi.org/10.1063/1.1721448
  22. M. Elhefnawey, G.L. Shuai, Z. Li, M. N. Alla, D.T. Zhang, L. Li, On dry sliding wear of ECAPed Al-Mg-Zn alloy: Wear rate and coefficient of friction relationship, Alexandria Engineering Journal, 60 (2021), 927-939.  https://doi.org/10.1016/j.aej.2020.10.021
  23. X.B. Hu, L. Li, X.C. Wu, M. Zhang, Coarsening behavior of M23C6 carbides after ageing or thermal fatigue in AISI H13 steel with niobium, International Journal of Fatigue, 28 (2006) 175-182.  https://doi.org/10.1016/j.ijfatigue.2005.06.042
  24. M. Ozer, Influence of heat treatments on microstructure and wear behavior of AISI H13 tool steel, Metallic Materials/Kovove Materialy, 60 (2022). 
  25. I.M. Lifshitz, V.V. Slyozov, The kinetics of precipitation from supersaturated solid solutions, Journal of Physics and Chemistry of Solids, 19 (1961) 35-50.  https://doi.org/10.1016/0022-3697(61)90054-3
  26. C. Wagner, Theory of precipitate change by redissolution, Journal of The Electrochemical Society, 65 (1961) 581-591. 
  27. S. Kahrobaee, H.N. Sahraei, I.A. Akhlaghi, Nondestructive characterization of microstructure and mechanical properties of heat treated H13 tool steel using magnetic hysteresis loop methodology, Research in Nondestructive Evaluation, 30 (2019) 303-315.  https://doi.org/10.1080/09349847.2019.1574942
  28. R.L. Banerjee, X-Ray diffraction determination of retained austenite, Journal of Heat Treatment and Materials, 2 (1980) 147-149.  https://doi.org/10.1007/BF02833231
  29. M. Avrami, Granulation, phase change, and microstructure kinetics of phase change, III, The Journal of Chemical Physics 9 (1941) 177-184.  https://doi.org/10.1063/1.1750872
  30. Z. Zhang, D. Delagnes, G. Bernhart, Microstructure evolution of hot-work tool steels during tempering and definition of a kinetic law based on hardness measurements, Materials Science and Engineering: A, 380 (2004) 222-230. https://doi.org/10.1016/j.msea.2004.03.067