DOI QR코드

DOI QR Code

Tumor Stroma as a Therapeutic Target for Pancreatic Ductal Adenocarcinoma

  • Dae Ui Lee (Department of Medicine, College of Medicine, Inha University) ;
  • Beom Seok Han (Program in Biomedical Science & Engineering, The Graduate School, Inha University) ;
  • Kyung Hee Jung (Department of Medicine, College of Medicine, Inha University) ;
  • Soon-Sun Hong (Department of Medicine, College of Medicine, Inha University)
  • Received : 2024.02.20
  • Accepted : 2024.03.21
  • Published : 2024.05.01

Abstract

Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis owing to its desmoplastic stroma. Therefore, therapeutic strategies targeting this tumor stroma should be developed. In this study, we describe the heterogeneity of cancer-associated fibroblasts (CAFs) and their diverse roles in the progression, immune evasion, and resistance to treatment of PDAC. We subclassified the spatial distribution and functional activity of CAFs to highlight their effects on prognosis and drug delivery. Extracellular matrix components such as collagen and hyaluronan are described for their roles in tumor behavior and treatment outcomes, implying their potential as therapeutic targets. We also discussed the roles of extracellular matrix (ECM) including matrix metalloproteinases and tissue inhibitors in PDAC progression. Finally, we explored the role of the adaptive and innate immune systems in shaping the PDAC microenvironment and potential therapeutic strategies, with a focus on immune cell subsets, cytokines, and immunosuppressive mechanisms. These insights provide a comprehensive understanding of PDAC and pave the way for the development of prognostic markers and therapeutic interventions.

Keywords

Acknowledgement

This study was supported by a research grant from Inha University.

References

  1. Bailey, P., Chang, D. K., Nones, K., Johns, A. L., Patch, A. M., Gingras, M. C., Miller, D. K., Christ, A. N., Bruxner, T. J., Quinn, M. C., Nourse, C., Murtaugh, L. C., Harliwong, I., Idrisoglu, S., Manning, S., Nourbakhsh, E., Wani, S., Fink, L., Holmes, O., Chin, V., Anderson, M. J., Kazakoff, S., Leonard, C., Newell, F., Waddell, N., Wood, S., Xu, Q., Wilson, P. J., Cloonan, N., Kassahn, K. S., Taylor, D., Quek ,K., Robertson, A., Pantano, L., Mincarelli, L., Sanchez, L. N., Evers, L., Wu, J., Pinese, M., Cowley, M. J., Jones, M. D., Colvin, E. K., Nagrial, A. M., Humphrey, E. S., Chantrill, L. A., Mawson, A., Humphris, J., Chou, A., Pajic, M., Scarlett, C. J., Pinho, A. V., Giry-Laterriere, M., Rooman, I., Samra, J. S., Kench, J. G., Lovell, J. A., Merrett, N. D., Toon, C. W., Epari, K., Nguyen, N. Q., Barbour, A., Zeps, N., Moran-Jones, K., Jamieson, N. B., Graham, J. S., Duthie, F., Oien, K., Hair, J., Grutzmann, R., Maitra, A., Iacobuzio-Donahue, C. A., Wolfgang, C. L., Morgan, R. A., Lawlor, R. T., Corbo, V., Bassi, C., Rusev, B., Capelli, P., Salvia, R., Tortora, G., Mukhopadhyay, D., Petersen, G. M., Australian Pancreatic Cancer Genome Initiative, Munzy, D. M., Fisher, W. E., Karim, S. A., Eshleman, J. R., Hruban, R. H., Pilarsky, C., Morton, J. P., Sansom, O. J., Scarpa, A., Musgrove, E. A., Bailey, U. M., Hofmann, O., Sutherland, R. L., Wheeler, D. A., Gill, A. J., Gibbs, R. A., Pearson, J. V., Waddell, N., Biankin, A. V. and Grimmond, S. M. (2016) Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 531, 47-52. https://doi.org/10.1038/nature16965
  2. Baulida, J. (2017) Epithelial-to-mesenchymal transition transcription factors in cancer-associated fibroblasts. Mol. Oncol. 11, 847-859. https://doi.org/10.1002/1878-0261.12080
  3. Beatty, G. L., Winograd, R., Evans, R. A., Long, K. B., Luque, S. L., Lee, J. W., Clendenin, C., Gladney, W. L., Knoblock, D. M., Guirnalda, P. D. and Vonderheide, R. H. (2015) Exclusion of T cells from pancreatic carcinomas in mice is regulated by Ly6Clow F4/80+ extratumoral macrophages. Gastroenterology 149, 201-210. https://doi.org/10.1053/j.gastro.2015.04.010
  4. Beatty, G. L., Werba, G., Lyssiotis, C. A. and Simeone, D. M. (2021) The biological underpinnings of therapeutic resistance in pancreatic cancer. Genes Dev. 35, 940-962. https://doi.org/10.1101/gad.348523.121
  5. Belhabib, I., Zaghdoudi, S., Lac, C., Bousquet, C. and Jean, C. (2021) Extracellular matrices and cancer-associated fibroblasts: targets for cancer diagnosis and therapy? Cancers (Basel) 13, 3466.
  6. Benzing, C., Lam, H., Tsang, C. M., Rimmer, A., Arroyo-Berdugo, Y., Calle, Y. and Wells, C. M. (2019) TIMP-2 secreted by monocyte-like cells is a potent suppressor of invadopodia formation in pancreatic cancer cells. BMC Cancer 19, 1214.
  7. Bhatia, R., Bhyravbhatla, N., Kisling, A., Li, X., Batra, S. K. and Kumar, S. (2022) Cytokines chattering in pancreatic ductal adenocarcinoma tumor microenvironment. Semin. Cancer Biol. 86, 499-510. https://doi.org/10.1016/j.semcancer.2022.03.021
  8. Biffi, G., Oni, T. E., Spielman, B., Hao, Y., Elyada, E., Park, Y., Preall, J. and Tuveson, D. A. (2019) IL1-induced JAK/STAT signaling is antagonized by TGFβ to shape CAF heterogeneity in pancreatic ductal adenocarcinoma. Cancer Discov. 9, 282-301. https://doi.org/10.1158/2159-8290.CD-18-0710
  9. Boyd, L. N. C., Andini, K. D., Peters, G. J., Kazemier, G. and Giovannetti, E. (2022) Heterogeneity and plasticity of cancer-associated fibroblasts in the pancreatic tumor microenvironment. Semin. Cancer Biol. 82, 184-196. https://doi.org/10.1016/j.semcancer.2021.03.006
  10. Cave, D. D., Buonaiuto, S., Sainz, B., Jr., Fantuz, M., Mangini, M., Carrer, A., Di Domenico, A., Iavazzo, T. T., Andolfi, G., Cortina, C., Sevillano, M., Heeschen, C., Colonna, V., Corona, M., Cucciardi, A., Di Guida, M., Batlle, E., De Luca, A. and Lonardo, E. (2022) LAMC2 marks a tumor-initiating cell population with an aggressive signature in pancreatic cancer. J. Exp. Clin. Cancer Res. 41, 315.
  11. Chen, Y., Yang, S., Tavormina, J., Tampe, D., Zeisberg, M., Wang, H., Mahadevan, K. K., Wu, C. J., Sugimoto, H., Chang, C. C., Jenq, R. R., McAndrews, K. M. and Kalluri, R. (2022) Oncogenic collagen I homotrimers from cancer cells bind to α3β1 integrin and impact tumor microbiome and immunity to promote pancreatic cancer. Cancer Cell 40, 818-834. https://doi.org/10.1016/j.ccell.2022.06.011
  12. Cheng, F., Gong, Q., Yu, H. and Stephanopoulos, G. (2016) High-titer biosynthesis of hyaluronic acid by recombinant Corynebacterium glutamicum. Biotechnol. J. 11, 574-584. https://doi.org/10.1002/biot.201500404
  13. Djurec, M., Grana, O., Lee, A., Troule, K., Espinet, E., Cabras, L., Navas, C., Blasco, M. T., Martin-Diaz, L., Burdiel, M., Li, J., Liu, Z., Vallespinos, M., Sanchez-Bueno, F., Sprick, M. R., Trumpp, A., Sainz, B., Jr., Al-Shahrour, F., Rabadan, R., Guerra, C. and Barbacid, M. (2018) Saa3 is a key mediator of the protumorigenic properties of cancer-associated fibroblasts in pancreatic tumors. Proc. Natl. Acad. Sci. U. S. A. 115, E1147-E1156. https://doi.org/10.1073/pnas.1717802115
  14. Drifka, C. R., Loeffler, A. G., Mathewson, K., Keikhosravi, A., Eickhoff, J. C., Liu, Y., Weber, S. M., Kao, W. J. and Eliceiri, K. W. (2016) Highly aligned stromal collagen is a negative prognostic factor following pancreatic ductal adenocarcinoma resection. Oncotarget 7, 76197-76213. https://doi.org/10.18632/oncotarget.12772
  15. Elyada, E., Bolisetty, M., Laise, P., Flynn, W. F., Courtois, E. T., Burkhart, R. A., Teinor, J. A., Belleau, P., Biffi, G., Lucito, M. S., Sivajothi, S., Armstrong, T. D., Engle, D. D., Yu, K. H., Hao, Y., Wolfgang, C. L., Park, Y., Preall, J., Jaffee, E. M., Califano, A., Robson, P. and Tuveson, D. A. (2019) Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov. 9, 1102-1123. https://doi.org/10.1158/2159-8290.CD-19-0094
  16. Feig, C., Jones, J. O., Kraman, M., Wells, R. J., Deonarine, A., Chan, D. S., Connell, C. M., Roberts, E. W., Zhao, Q., Caballero, O. L., Teichmann, S. A., Janowitz. T., Jodrell, D. I., Tuveson, D. A. and Fearon, D. T. (2013) Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc. Natl. Acad. Sci. U. S. A. 110, 20212-20217. https://doi.org/10.1073/pnas.1320318110
  17. Feng, B., Wu, J., Shen, B., Jiang, F. and Feng, J. (2022) Cancer-associated fibroblasts and resistance to anticancer therapies: status, mechanisms, and countermeasures. Cancer Cell Int. 22, 166.
  18. Garcia, P. E., Scales, M. K., Allen, B. L. and Pasca di Magliano, M. (2020) Pancreatic fibroblast heterogeneity: from development to cancer. Cells 9, 2464.
  19. Goulart, M. R., Stasinos, K., Fincham, R. E. A., Delvecchio, F. R. and Kocher, H. M. (2021) T cells in pancreatic cancer stroma. World J. Gastroenterol. 27, 7956-7968. https://doi.org/10.3748/wjg.v27.i46.7956
  20. Grunwald, B., Harant, V., Schaten, S., Fruhschutz, M., Spallek, R., Hochst, B., Stutzer, K., Berchtold, S., Erkan, M., Prokopchuk, O., Martignoni, M., Esposito, I., Heikenwalder, M., Gupta, A., Siveke, J., Saftig, P., Knolle, P., Wohlleber, D. and Kruger, A. (2016) Pancreatic premalignant lesions secrete tissue inhibitor of metalloproteinases-1, which activates hepatic stellate cells via CD63 signaling to create a premetastatic niche in the liver. Gastroenterology 151, 1011-1024. https://doi.org/10.1053/j.gastro.2016.07.043
  21. Han, C., Liu, T. and Yin, R. (2020) Biomarkers for cancer-associated fibroblasts. Biomark. Res. 8, 64.
  22. Helms, E. J., Berry, M. W., Chaw, R. C., DuFort, C. C., Sun, D., Onate, M. K., Oon, C, Bhattacharyya, S., Sanford-Crane, H., Horton, W., Finan, J. M., Sattler, A., Makar, R., Dawson, D. W., Xia, Z., Hingorani, S. R. and Sherman, M. H. (2022) Mesenchymal lineage heterogeneity underlies nonredundant functions of pancreatic cancer-associated fibroblasts. Cancer Discov. 12, 484-501. https://doi.org/10.1158/2159-8290.CD-21-0601
  23. Hu, D., Ansari, D., Zhou, Q., Sasor, A., Said Hilmersson, K. and Andersson, R. (2019) Stromal fibronectin expression in patients with resected pancreatic ductal adenocarcinoma. World J. Surg. Oncol. 17, 29.
  24. Huang, C. and Chen, J. (2021) Laminin-332 mediates proliferation, apoptosis, invasion, migration and epithelial-to-mesenchymal transition in pancreatic ductal adenocarcinoma. Mol. Med. Rep. 23, 11.
  25. Huang, H., Wang, Z., Zhang, Y., Pradhan, R. N., Ganguly, D., Chandra, R., Murimwa, G., Wright, S., Gu, X., Maddipati, R., Muller, S., Turley, S. J. and Brekken, R. A. (2022) Mesothelial cell-derived antigen-presenting cancer-associated fibroblasts induce expansion of regulatory T cells in pancreatic cancer. Cancer Cell 40, 656-673.e7. https://doi.org/10.1016/j.ccell.2022.04.011
  26. Huang, X., He, C., Hua, X., Kan, A., Mao, Y., Sun, S., Duan, F., Wang, J., Huang, P. and Li, S. (2020) Oxidative stress induces monocyte-to-myofibroblast transdifferentiation through p38 in pancreatic ductal adenocarcinoma. Clin. Transl. Med. 10, e41.
  27. Jiang, H., Hegde, S., Knolhoff, B. L., Zhu, Y., Herndon, J. M., Meyer, M. A., Nywening, T. M., Hawkins, W. G., Shapiro, I. M., Weaver, D. T., Pachter, J. A., Wang-Gillam, A. and DeNardo, D. G. (2017) Targeting focal adhesion kinase renders pancreatic cancers responsive to checkpoint immunotherapy. Nat. Med. 23, 851-860.
  28. Joshi, R. S., Kanugula, S. S., Sudhir, S., Pereira, M. P., Jain, S. and Aghi, M. K. (2021) The role of cancer-associated fibroblasts in tumor progression. Cancers (Basel) 13, 1399.
  29. Kalinski, P. (2012) Regulation of immune responses by prostaglandin E2. J. Immunol. 188, 21-28. https://doi.org/10.4049/jimmunol.1101029
  30. Kessenbrock, K., Plaks, V. and Werb, Z. (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141, 52-67. https://doi.org/10.1016/j.cell.2010.03.015
  31. Kirtonia, A., Pandey, A. K., Ramachandran, B., Mishra, D. P., Dawson, D. W., Sethi, G., Ganesan, T. S., Koeffler, H. P. and Garg, M. (2022) Overexpression of laminin-5 gamma-2 promotes tumorigenesis of pancreatic ductal adenocarcinoma through EGFR/ERK1/2/AKT/mTOR cascade. Cell. Mol. Life Sci. 79, 362.
  32. Kudo, D., Suto, A. and Hakamada, K. (2017) The development of a novel therapeutic strategy to target hyaluronan in the extracellular matrix of pancreatic ductal adenocarcinoma. Int. J. Mol. Sci. 18, 600.
  33. Maitra, A. and Hruban, R. H. (2008) Pancreatic cancer. Annu. Rev. Pathol. 3, 157-188. https://doi.org/10.1146/annurev.pathmechdis.3.121806.154305
  34. Marcon, F., Zuo, J., Pearce, H., Nicol, S., Margielewska-Davies, S., Farhat, M., Mahon, B., Middleton, G., Brown, R., Roberts, K. J. and Moss, P. (2020) NK cells in pancreatic cancer demonstrate impaired cytotoxicity and a regulatory IL-10 phenotype. Oncoimmunology 9, 1845424.
  35. McAndrews, K. M., Chen, Y., Darpolor, J. K., Zheng, X., Yang, S., Carstens, J. L., Li, B., Wang, H., Miyake, T., Correa de Sampaio, P., Kirtley, M. L., Natale, M., Wu, C. C., Sugimoto, H., LeBleu, V. S. and Kalluri, R. (2022) Identification of functional heterogeneity of carcinoma-associated fibroblasts with distinct IL6-mediated therapy resistance in pancreatic cancer. Cancer Discov. 12, 1580-1597. https://doi.org/10.1158/2159-8290.CD-20-1484
  36. Morgan, A., Griffin, M., Kameni, L., Wan, D. C., Longaker, M. T. and Norton, J. A. (2023) Medical biology of cancer-associated fibroblasts in pancreatic cancer. Biology (Basel) 12, 1044.
  37. Murray, E. R., Menezes, S., Henry, J. C., Williams, J. L., Alba-Castellon, L., Baskaran, P., Quetier, I., Desai, A., Marshall, J. J. T., Rosewell, I., Tatari, M., Rajeeve, V., Khan, F., Wang, J., Kotantaki, P., Tyler, E. J., Singh, N., Reader, C. S., Carter, E. P., Hodivala-Dilke, K., Grose, R. P., Kocher, H. M., Gavara, N., Pearce, O., Cutillas, P., Marshall, J. F. and Cameron, A. J. M. (2022) Disruption of pancreatic stellate cell myofibroblast phenotype promotes pancreatic tumor invasion. Cell Rep. 38, 110227.
  38. Nagathihalli, N. S., Castellanos, J. A., VanSaun, M. N., Dai, X., Ambrose, M., Guo, Q., Xiong, Y. and Merchant, N. B. (2016) Pancreatic stellate cell secreted IL-6 stimulates STAT3 dependent invasiveness of pancreatic intraepithelial neoplasia and cancer cells. Oncotarget 7, 65982-65992. https://doi.org/10.18632/oncotarget.11786
  39. Nakajima, K., Ino, Y., Naito, C., Nara, S., Shimasaki, M., Ishimoto, U., Iwasaki, T., Doi, N., Esaki, M., Kishi, Y., Shimada, K. and Hiraoka, N. (2022) Neoadjuvant therapy alters the collagen architecture of pancreatic cancer tissue via Ephrin-A5. Br. J. Cancer 126, 628-639. https://doi.org/10.1038/s41416-021-01639-9
  40. Neesse, A., Bauer, C. A., Ohlund, D., Lauth, M., Buchholz, M., Michl, P., Tuveson, D. A. and Gress, T. M. (2019) Stromal biology and therapy in pancreatic cancer: ready for clinical translation? Gut 68,159-171. https://doi.org/10.1136/gutjnl-2018-316451
  41. Ohlund, D., Elyada, E. and Tuveson, D. (2014) Fibroblast heterogeneity in the cancer wound. J. Exp. Med. 211, 1503-1523. https://doi.org/10.1084/jem.20140692
  42. Ohlund, D., Franklin, O., Lundberg, E., Lundin, C. and Sund, M. (2013) Type IV collagen stimulates pancreatic cancer cell proliferation, migration, and inhibits apoptosis through an autocrine loop. BMC Cancer 13, 154.
  43. Ohlund, D., Handly-Santana, A., Biffi, G., Elyada, E., Almeida, A. S., Ponz-Sarvise, M., Corbo, V., Oni, T. E., Hearn, S. A., Lee, E. J., Chio, I. I., Hwang, C. I., Tiriac, H., Baker, L. A., Engle, D. D., Feig, C., Kultti, A., Egeblad, M., Fearon, D. T., Crawford, J. M., Clevers, H., Park, Y. and Tuveson, D. A. (2017) Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J. Exp. Med. 214, 579-596. https://doi.org/10.1084/jem.20162024
  44. Okada, Y., Takahashi, N., Takayama, T. and Goel, A. (2021) LAMC2 promotes cancer progression and gemcitabine resistance through modulation of EMT and ATP-binding cassette transporters in pancreatic ductal adenocarcinoma. Carcinogenesis 42, 546-556. https://doi.org/10.1093/carcin/bgab011
  45. Olivares, O., Mayers, J. R., Gouirand, V., Torrence, M. E., Gicquel, T., Borge, L., Lac, S., Roques, J., Lavaut, M. N., Berthezene, P., Rubis, M., Secq, V., Garcia, S., Moutardier, V., Lombardo, D., Iovanna, J. L., Tomasini, R., Guillaumond, F., Vander Heiden, M. G. and Vasseur, S. (2017) Collagen-derived proline promotes pancreatic ductal adenocarcinoma cell survival under nutrient limited conditions. Nat. Commun. 8, 16031.
  46. Ozdemir, B. C., Pentcheva-Hoang, T., Carstens, J. L., Zheng, X., Wu, C. C., Simpson, T. R., Laklai, H., Sugimoto, H., Kahlert, C., Novitskiy, S. V., De Jesus-Acosta, A., Sharma, P., Heidari, P., Mahmood, U., Chin, L., Moses, H. L., Weaver, V. M., Maitra, A., Allison, J. P., LeBleu, V. S. and Kalluri, R. (2014) Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 25, 719-734. https://doi.org/10.1016/j.ccr.2014.04.005
  47. Peng, X., Chen, L., Jiao, Y., Wang, Y., Hao, Z. and Zhan, X. (2021) Application of natural killer cells in pancreatic cancer. Oncol. Lett. 22, 647.
  48. Placencio-Hickok, V. R., Lauzon, M., Moshayedi, N., Guan, M., Kim, S., Nissen, N., Lo, S., Pandol, S., Larson, B. K., Gong, J., Hendifar, A. E. and Osipov, A. (2022) Hyaluronan heterogeneity in pancreatic ductal adenocarcinoma: primary tumors compared to sites of metastasis. Pancreatology 22, 92-97. https://doi.org/10.1016/j.pan.2021.09.015
  49. Poh, A. R. and Ernst, M. (2021) Tumor-associated macrophages in pancreatic ductal adenocarcinoma: therapeutic opportunities and clinical challenges. Cancers 13, 2860.
  50. Principe, D. R., Park, A., Dorman, M. J., Kumar, S., Viswakarma, N., Rubin, J., Torres, C., McKinney, R., Munshi, H. G., Grippo, P. J. and Rana, A. (2019) TGFβ blockade augments PD-1 inhibition to promote T-cell-mediated regression of pancreatic cancer. Mol. Cancer Ther. 18, 613-620.
  51. Provenzano, P. P., Cuevas, C., Chang, A. E., Goel, V. K., Von Hoff, D. D. and Hingorani, S. R. (2012) Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 21, 418-429. https://doi.org/10.1016/j.ccr.2012.01.007
  52. Pu, N., Zhao, G., Gao, S., Cui, Y., Xu, Y., Lv, Y., Nuerxiati, A. and Wu, W. (2018a) Neutralizing TGF-β promotes anti-tumor immunity of dendritic cells against pancreatic cancer by regulating T lymphocytes. Cent. Eur. J. Immunol. 43, 123-131. https://doi.org/10.5114/ceji.2018.77381
  53. Pu, N., Zhao, G., Yin, H., Li, J. A., Nuerxiati, A., Wang, D., Xu, X., Kuang, T., Jin, D., Lou, W. and Wu, W. (2018b) CD25 and TGF-β blockade based on predictive integrated immune ratio inhibits tumor growth in pancreatic cancer. J. Transl. Med. 16, 294.
  54. Resovi, A., Persichitti, P., Brunelli, L., Minoli, L., Borsotti, P., Garattini, G., Tironi, M., Dugnani, E., Redegalli, M., De Simone, G., Pastorelli, R., Bani, M. R., Piemonti, L., Mosher, D. F., Giavazzi, R., Taraboletti, G. and Belotti, D. (2023) Fibronectin fragments generated by pancreatic trypsin act as endogenous inhibitors of pancreatic tumor growth. J. Exp. Clin. Cancer Res. 42, 201.
  55. Rhim, A. D., Oberstein, P. E., Thomas, D. H., Mirek, E. T., Palermo, C. F., Sastra, S. A., Dekleva, E. N., Saunders, T., Becerra, C. P., Tattersall, I. W., Westphalen, C. B., Kitajewski, J., Fernandez-Barrena, M. G., Fernandez-Zapico, M. E., Iacobuzio-Donahue, C., Olive, K. P. and Stanger, B. Z. (2014) Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell 25, 735-747. https://doi.org/10.1016/j.ccr.2014.04.021
  56. Roy, D. M. and Walsh, L. A. (2014) Candidate prognostic markers in breast cancer: focus on extracellular proteases and their inhibitors. Breast Cancer (Dove Med. Press) 6, 81-91.
  57. Ryan, D. P., Hong, T. S. and Bardeesy, N. (2014) Pancreatic adenocarcinoma. N. Engl. J. Med. 371, 1039-1049. https://doi.org/10.1056/NEJMra1404198
  58. Sari, B., Gulbey, O. and Hamill, K. J. (2023) Laminin 332 expression levels predict clinical outcomes and chemotherapy response in patients with pancreatic adenocarcinoma. Front. Cell Dev. Biol. 11, 1242706.
  59. Schoeps, B., Eckfeld, C., Fluter, L., Keppler, S., Mishra, R., Knolle, P., Bayerl, F., Bottcher, J., Hermann, C. D., Haussler, D. and Kruger, A. (2021) Identification of invariant chain CD74 as a functional receptor of tissue inhibitor of metalloproteinases-1 (TIMP-1). J. Biol. Chem. 297, 101072.
  60. Shi, Y., Gao, W., Lytle, N. K., Huang, P., Yuan, X., Dann, A. M., Ridinger-Saison, M., DelGiorno, K. E., Antal, C. E., Liang, G., Atkins, A. R., Erikson, G., Sun, H., Meisenhelder, J., Terenziani, E., Woo, G., Fang, L., Santisakultarm, T. P., Manor, U., Xu, R., Becerra, C. R., Borazanci, E., Von Hoff, D. D., Grandgenett, P. M., Hollingsworth, M. A., Leblanc, M., Umetsu, S. E., Collisson, E. A., Scadeng, M., Lowy, A. M., Donahue, T. R., Reya, T., Downes, M., Evans, R. M., Wahl, G. M., Pawson, T., Tian, R. and Hunter, T. (2019) Targeting LIF-mediated paracrine interaction for pancreatic cancer therapy and monitoring. Nature 569, 131-135. https://doi.org/10.1038/s41586-019-1130-6
  61. Shin, K., Lim, A., Zhao, C., Sahoo, D., Pan, Y., Spiekerkoetter, E., Liao, J. C. and Beachy, P. A. (2014) Hedgehog signaling restrains bladder cancer progression by eliciting stromal production of urothelial differentiation factors. Cancer Cell 26, 521-533. https://doi.org/10.1016/j.ccell.2014.09.001
  62. Singh, A., Talekar, M., Raikar, A. and Amiji, M. (2014) Macrophage-targeted delivery systems for nucleic acid therapy of inflammatory diseases. J. Control. Release 190, 515-530. https://doi.org/10.1016/j.jconrel.2014.04.021
  63. Slapak, E. J., Duitman, J., Tekin, C., Bijlsma, M. F. and Spek, C. A (2020) Matrix metalloproteases in pancreatic ductal adenocarcinoma: key drivers of disease progression? Biology 9, 80.
  64. Sunami, Y., Haussler, J. and Kleeff, J. (2020) Cellular heterogeneity of pancreatic stellate cells, mesenchymal stem cells, and cancer-associated fibroblasts in pancreatic cancer. Cancers (Basel) 12, 3770.
  65. Tahkola, K., Ahtiainen, M., Mecklin, J. P., Kellokumpu, I., Laukkarinen, J., Tammi, M., Tammi, R., Vayrynen, J. P. and Bohm, J. (2021) Stromal hyaluronan accumulation is associated with low immune response and poor prognosis in pancreatic cancer. Sci. Rep. 11, 12216.
  66. Takahashi, R., Macchini, M., Sunagawa, M., Jiang, Z., Tanaka, T., Valenti, G., Renz, B. W., White, R. A., Hayakawa, Y., Westphalen, C. B., Tailor, Y., Iuga, A. C., Gonda, T. A., Genkinger, J., Olive, K. P. and Wang, T. C. (2021) Interleukin-1β-induced pancreatitis promotes pancreatic ductal adenocarcinoma via B lymphocyte-mediated immune suppression. Gut 70, 330-341.
  67. Tan, Y., Li, X., Tian, Z., Chen, S., Zou, J., Lian, G., Chen, S., Huang, K. and Chen, Y. (2021) TIMP1 down-regulation enhances gemcitabine sensitivity and reverses chemoresistance in pancreatic cancer. Biochem. Pharmacol. 189, 114085.
  68. Tian, F., Ma, L., Zhao, R., Ji, L., Wang, X., Sun, W. and Jiang, Y. (2022) Correlation between matrix metalloproteinases with coronary artery lesion caused by kawasakidisease. Front. Pediatr. 10, 802217.
  69. Vincent, A., Herman, J., Schulick, R., Hruban, R. H. and Goggins, M. (2011) Pancreatic cancer. Lancet 378, 607-620. https://doi.org/10.1016/S0140-6736(10)62307-0
  70. Wang, J., Cao, Z., Zhang, X. M., Nakamura, M., Sun, M., Hartman, J., Harris, R. A., Sun, Y. and Cao, Y. (2015) Novel mechanism of macrophage-mediated metastasis revealed in a zebrafish model of tumor development. Cancer Res. 75, 306-315. https://doi.org/10.1158/0008-5472.CAN-14-2819
  71. Wang, M. T., Fer, N., Galeas, J., Collisson, E. A., Kim, S. E., Sharib, J. and McCormick, F. (2019) Blockade of leukemia inhibitory factor as a therapeutic approach to KRAS driven pancreatic cancer. Nat. Commun. 10, 3055.
  72. Whatcott, C. J., Diep, C. H., Jiang, P., Watanabe, A., LoBello, J., Sima, C., Hostetter, G., Shepard, H. M., Von Hoff, D. D. and Han, H. (2015) Desmoplasia in primary tumors and metastatic lesions of pancreatic cancer. Clin. Cancer Res. 21, 3561-3568. https://doi.org/10.1158/1078-0432.CCR-14-1051
  73. Wright, K., Ly, T., Kriet, M., Czirok, A. and Thomas, S. M. (2023) Cancer-associated fibroblasts: master tumor microenvironment modifiers. Cancers (Basel) 15, 1899.
  74. Xing, Y., Zhang, X., Qin, F., Yang, J., Ai, L., Wang, Q. and Zhai, Y. (2022) The clinical significance of circulating tumor cells and T lymphocyte subtypes in pancreatic cancer patients. Bioengineered 13, 2130-2138. https://doi.org/10.1080/21655979.2021.2023800
  75. Xu, T., Xu, X., Liu, D., Chang, D., Li, S., Sun, Y., Xie, J. and Ju, S. (2023) Visual investigation of tumor-promoting fibronectin potentiated by obesity in pancreatic ductal adenocarcinoma using an MR/NIRF dual-modality dendrimer nanoprobe. Adv. Healthc. Mater. 12, e2300787.
  76. Yang, Y., Chen, Z., Chu, X., Yan, Q., He, J., Guo, Y., Zhao, Z., Zhang, Y., Hu, D., Ding, H., Zhao, X., Pan, Y., Dong, H., Wang, L. and Pan, J. (2023) Targeting LAYN inhibits colorectal cancer metastasis and tumor-associated macrophage infiltration induced by hyaluronan oligosaccharides. Matrix Biol. 117, 15-30. https://doi.org/10.1016/j.matbio.2023.02.005
  77. Yi, G., Guo, S., Liu, W., Wang, H., Liu, R., Tsun, A., Jin, G. and Li, B. (2018) Identification and functional analysis of heterogeneous FOXP3+ Treg cell subpopulations in human pancreatic ductal adenocarcinoma. Sci. Bull. (Beijing) 63, 972-981. https://doi.org/10.1016/j.scib.2018.05.028
  78. Zhai, L. L., Wu, Y., Cai, C. Y., Huang, Q. and Tang, Z. G. (2016) High-level expression and prognostic significance of matrix metalloprotease-19 and matrix metalloprotease-20 in human pancreatic ductal adenocarcinoma. Pancreas 45, 1067-1072. https://doi.org/10.1097/MPA.0000000000000569
  79. Zhang, X., Lu, J., Zhou, L., You, L., Liang, Z., Guo, J. and Zhao, Y. (2020) Matrix metalloproteinase 11 as a novel tumor promoter and diagnostic and prognostic biomarker for pancreatic ductal adenocarcinoma. Pancreas 49, 812-821. https://doi.org/10.1097/MPA.0000000000001583
  80. Zhang, Z., Zhang, H., Shi, L., Wang, D. and Tang, D. (2022) Heterogeneous cancer-associated fibroblasts: a new perspective for understanding immunosuppression in pancreatic cancer. Immunology 167, 1-14. https://doi.org/10.1111/imm.13496
  81. Zinger, A., Koren, L., Adir, O., Poley, M., Alyan, M., Yaari, Z., Noor, N., Krinsky, N., Simon, A., Gibori, H., Krayem, M., Mumblat, Y., Kasten, S., Ofir, S., Fridman, E., Milman, N., Lubtow, M. M., Liba, L., Shklover, J., Shainsky-Roitman, J., Binenbaum, Y., Hershkovitz, D., Gil, Z., Dvir, T., Luxenhofer, R., Satchi-Fainaro, R. and Schroeder, A. (2019) Collagenase nanoparticles enhance the penetration of drugs into pancreatic tumors. ACS Nano 13, 11008-11021. https://doi.org/10.1021/acsnano.9b02395