DOI QR코드

DOI QR Code

Unlocking the Therapeutic Potential of BCL-2 Associated Protein Family: Exploring BCL-2 Inhibitors in Cancer Therapy

  • Bisan El Dakkak (Research Institute of Medical and Health Sciences, University of Sharjah) ;
  • Jalal Taneera (Research Institute of Medical and Health Sciences, University of Sharjah) ;
  • Waseem El-Huneidi (Research Institute of Medical and Health Sciences, University of Sharjah) ;
  • Eman Abu-Gharbieh (Research Institute of Medical and Health Sciences, University of Sharjah) ;
  • Rifat Hamoudi (Research Institute of Medical and Health Sciences, University of Sharjah) ;
  • Mohammad H. Semreen (Research Institute of Medical and Health Sciences, University of Sharjah) ;
  • Nelson C. Soares (Research Institute of Medical and Health Sciences, University of Sharjah) ;
  • Eman Y. Abu-Rish (School of Pharmacy, The University of Jordan) ;
  • Mahmoud Y. Alkawareek (School of Pharmacy, The University of Jordan) ;
  • Alaaldin M. Alkilany (College of Pharmacy, QU Health, Qatar University) ;
  • Yasser Bustanji (Research Institute of Medical and Health Sciences, University of Sharjah)
  • 투고 : 2023.08.25
  • 심사 : 2023.12.05
  • 발행 : 2024.05.01

초록

Apoptosis, programmed cell death pathway, is a vital physiological mechanism that ensures cellular homeostasis and overall cellular well-being. In the context of cancer, where evasion of apoptosis is a hallmark, the overexpression of anti-apoptotic proteins like Bcl2, Bcl-xL and Mcl-1 has been documented. Consequently, these proteins have emerged as promising targets for therapeutic interventions. The BCL-2 protein family is central to apoptosis and plays a significant importance in determining cellular fate serving as a critical determinant in this biological process. This review offers a comprehensive exploration of the BCL-2 protein family, emphasizing its dual nature. Specifically, certain members of this family promote cell survival (known as anti-apoptotic proteins), while others are involved in facilitating cell death (referred to as pro-apoptotic and BH3-only proteins). The potential of directly targeting these proteins is examined, particularly due to their involvement in conferring resistance to traditional cancer therapies. The effectiveness of such targeting strategies is also discussed, considering the tumor's propensity for anti-apoptotic pathways. Furthermore, the review highlights emerging research on combination therapies, where BCL-2 inhibitors are used synergistically with other treatments to enhance therapeutic outcomes. By understanding and manipulating the BCL-2 family and its associated pathways, we open doors to innovative and more effective cancer treatments, offering hope for resistant and aggressive cases.

키워드

과제정보

The authors would like to express their gratitude to the University of Sharjah and the University of Jordan for their continuous support and for supplying the necessary resources for this study.

참고문헌

  1. Ackler, S., Mitten, M. J., Chen, J., Clarin, J., Foster, K., Jin, S., Phillips, D. C., Schlessinger, S., Wang, B., Leverson, J. D. and Boghaert, E. R. (2012) Navitoclax (ABT-263) and bendamustine ± rituximab induce enhanced killing of non-Hodgkin's lymphoma tumours in vivo. Br. J. Pharmacol. 167, 881-891. https://doi.org/10.1111/j.1476-5381.2012.02048.x
  2. Ackler, S., Xiao, Y., Mitten, M. J., Foster, K., Oleksijew, A., Refici, M., Schlessinger, S., Wang, B., Chemburkar, S. R., Bauch, J., Tse, C., Frost, D. J., Fesik, S. W., Rosenberg, S. H., Elmore, S. W. and Shoemaker, A. R. (2008) ABT-263 and rapamycin act cooperatively to kill lymphoma cells in vitro and in vivo. Mol. Cancer Ther. 7, 3265-3274. https://doi.org/10.1158/1535-7163.MCT-08-0268
  3. Al-Odat, O., von Suskil, M., Chitren, R., Elbezanti, W., Srivastava, S., Budak-Alpddogan, T., Jonnalagadda, S., Aggarwal, B. and Pandey, M. (2021) Mcl-1 inhibition: managing malignancy in multiple myeloma. Front. Pharmacol. 12, 699629.
  4. AlKhatib, H. S., Taha, M. O., Aiedeh, K. M., Bustanji, Y. and Sweileh, B. (2006) Synthesis and in vitro behavior of iron-crosslinked N-methyl and N-benzyl hydroxamated derivatives of alginic acid as controlled release carriers. Eur. Polym. J. 42, 2464-2474. https://doi.org/10.1016/j.eurpolymj.2006.05.018
  5. Alshaer, W., Zraikat, M., Amer, A., Nsairat, H., Lafi, Z., Alqudah, D. A., Al Qadi, E., Alsheleh, T., Odeh, F., Alkaraki, A., Zihlif, M., Bustanji, Y., Fattal, E. and Awidi, A. (2019) Encapsulation of echinomycin in cyclodextrin inclusion complexes into liposomes: in vitro antiproliferative and anti-invasive activity in glioblastoma. RSC Adv. 9, 30976-30988. https://doi.org/10.1039/C9RA05636J
  6. Althaher, A. R., Oran, S. A. and Bustanji, Y. K. (2022) Induction of apoptosis by Ruta chalepensis L. essential oil in human breast cancer cells (MCF-7). J. Pharm. Pharmacogn. Res. 10, 73-83. https://doi.org/10.56499/jppres21.1180_10.1.73
  7. Anilkumar, U. and Prehn, J. (2014) Anti-apoptotic BCL-2 family proteins in acute neural injury. Front. Cell. Neurosci. 8, 281.
  8. Aribi, A., Salhotra, A., Ball, B., Stein, A., Marcucci, G. and Pullarkat, V. (2023) Report of four acute myeloid leukemia patients with sustained complete remission with less frequent administration of decitabine and venetoclax. Leuk. Lymphoma 64, 897-899. https://doi.org/10.1080/10428194.2023.2179361
  9. Asada, N., Ando, J., Takada, S., Yoshida, C., Usuki, K., Shinagawa, A., Ishizawa, K., Miyamoto, T., Iida, H., Dobashi, N., Okubo, S., Honda, H., Soshin, T., Nishimura, Y., Tsutsui, A., Mukai, H. and Yamamoto, K. (2023) Venetoclax plus low-dose cytarabine in patients with newly diagnosed acute myeloid leukemia ineligible for intensive chemotherapy: an expanded access study in Japan. Jpn. J. Clin. Oncol. 53, 595-603. https://doi.org/10.1093/jjco/hyad027
  10. Balachander, S. B., Criscione, S. W., Byth, K. F., Cidado, J., Adam, A., Lewis, P., Macintyre, T., Wen, S., Lawson, D., Burke, K., Lubinski, T., Tyner, J. W., Kurtz, S. E., McWeeney, S. K., Varnes, J., Diebold, R. B., Gero, T., Ioannidis, S., Hennessy, E. J. and Gibbons, F. D. (2020) AZD4320, a dual inhibitor of Bcl-2 and Bcl-xL, induces tumor regression in hematologic cancer models without dose-limiting thrombocytopenia. Clin. Cancer Res. 26, 6535-6549. https://doi.org/10.1158/1078-0432.CCR-20-0863
  11. Balasubramanian, K. (2022) Computational and artificial intelligence techniques for drug discovery and administration. In Comprehensive Pharmacology, Vol. 2, pp. 553-616. Elsevier.
  12. Bardwell, P. D., Gu, J., McCarthy, D., Wallace, C., Bryant, S., Goess, C., Mathieu, S., Grinnell, C., Erickson, J., Rosenberg, S. H., Schwartz, A. J., Hugunin, M., Tarcsa, E., Elmore, S. W., McRae, B., Murtaza, A., Wang, L. C. and Ghayur, T. (2009) The Bcl-2 family antagonist ABT-737 significantly inhibits multiple animal models of autoimmunity. J. Immunol. 182, 7482-7489. https://doi.org/10.4049/jimmunol.0802813
  13. Bierbrauer, A., Jacob, M. and Vogler, M. (2020) A direct comparison of selective BH3-mimetics reveals BCL-XL, BCL-2 and MCL-1 as promising therapeutic targets in neuroblastoma. Br. J. Cancer 122, 1544-1551. https://doi.org/10.1038/s41416-020-0795-9
  14. Bou Malhab, L. J., Bajbouj, K., Shehab, N. G., Elayoty, S. M., Sinoj, J., Adra, S., Taneera, J., Saleh, M. A., Abdel-Rahman, W. M., Semreen, M. H., Alzoubi, K. H., Bustanji, Y., El-Huneidi, W. and AbuGharbieh, E. (2023) Potential anticancer properties of calotropis procera: an investigation on breast and colon cancer cells. Heliyon 9, e16706.
  15. Bustanji, Y., Taha, M. O., Yousef, A. M. and Al-Bakri, A. G. (2006) Berberine potently inhibits protein tyrosine phosphatase 1B: investigation by docking simulation and experimental validation. J. Enzyme Inhib. Med. Chem. 21, 163-171.
  16. Bustanji, Y., Taneera, J., Semreen, M. H., Abu-Gharbieh, E., El-Huneidi, W., Faris, M. A. I. E., Alzoubi, K. H., Soares, N. C., Albustanji, B., Abuhelwa, A. Y., Abu-Zurayk, R., Alqudah, M. A. Y. and AlKhatib, H. S. (2023) Gold nanoparticles and breast cancer: a bibliometric analysis of the current state of research and future directions. OpenNano 12, 100164.
  17. Campbell, K. J., Dhayade, S. and Ferrari, N. (2018) MCL-1 is a prognostic indicator and drug target in breast cancer. Cell Death Dis. 9, 005352.
  18. Certo, M., Moore, V. D. G., Nishino, M., Wei, G., Korsmeyer, S., Armstrong, S. A. and Letai, A. (2006) Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell 9, 351-365. https://doi.org/10.1016/j.ccr.2006.03.027
  19. Chan, F., Luz, N. F. and Moriwaki, K. (2015) Programmed necrosis in the cross talk of cell death and inflammation. Ann. Rev. Immunol. 33, 79-106. https://doi.org/10.1146/annurev-immunol-032414-112248
  20. Cui, J. and Placzek, W. (2018) Post-transcriptional regulation of antiapoptotic BCL2 family members. Int. J. Mol. Sci. 19, 308.
  21. Daei, S., Ziamajidi, N., Abbasalipourkabir, R., Aminzadeh, Z. and Vahabirad, M. (2023) Evaluating oxidative stress condition in human bladder cancer 5637 cell line upon exposure to silver nanoparticles. Middle East J. Cancer. 14, 370-377.
  22. Dai, H., Ding, H., Meng, X. W., Lee, S. H., Schneider, P. A. and Kaufmann, S. H. (2013) Contribution of Bcl-2 phosphorylation to bak binding and drug resistance. Cancer Res. 73, 6998-7008. https://doi.org/10.1158/0008-5472.CAN-13-0940
  23. Del Bufalo, D., Biroccio, A., Leonetti, C. and Zupi, G. (1997) Bcl-2 overexpression enhances the metastatic potential of a human breast cancer line. FASEB J. 11, 947-953. https://doi.org/10.1096/fasebj.11.12.9337147
  24. Delbridge, A., Grabow, S. and Strasser, A. (2016) Thirty years of BCL-2: translating cell death discoveries into novel cancer therapies. Nat. Rev. Cancer 16, 99-109. https://doi.org/10.1038/nrc.2015.17
  25. Dhanasekaran, D. and Reddy, E. (2008) JNK signaling in apoptosis. Oncogene 27, 6245-6251. https://doi.org/10.1038/onc.2008.301
  26. El-Deeb, N. M., Abo-Eleneen, M. A., Al-Madboly, L. A., Sharaf, M. M., Othman, S. S., Ibrahim, O. M. and Mubarak, M. S. (2020) Biogenically synthesized polysaccharides-capped silver nanoparticles: immunomodulatory and antibacterial potentialities against resistant Pseudomonas aeruginosa. Front. Bioeng. Biotechnol. 8, 643.
  27. Eldesouki, S., Qadri, R., Abu Helwa, R., Barqawi, H., Bustanji, Y., Abu-Gharbieh, E. and El-Huneidi, W. (2022) Recent updates on the functional impact of kahweol and cafestol on cancer. Molecules 27, 7332.
  28. Findley, H. W., Gu, L., Yeager, A. M. and Zhou, M. (1997) Expression and regulation of Bcl-2, Bcl-xl, and Bax correlate with p53 status and sensitivity to apoptosis in childhood acute lymphoblastic leukemia. Blood 89, 2986-2993. https://doi.org/10.1182/blood.V89.8.2986
  29. Fu, D., Pfannenstiel, L. and Demelash, A. (2022) MCL1 nuclear translocation induces chemoresistance in colorectal carcinoma. Cell Death Dis. 13, 63.
  30. Gao, J., Li, L., Wu, M., Liu, M., Xie, X., Guo, J., Tang, H. and Xie, X. (2013) MiR-26a inhibits proliferation and migration of breast cancer through repression of MCL-1. PLoS One 8, e65138.
  31. Gao, J., Yang, X., Yin, W. and Li, M. (2018) Gallnuts: a potential treasure in anticancer drug discovery. Evid. Based Complement. Alternat. Med. 2018, 4930371.
  32. Gharaibeh, L., Alshaer, W., Wehaibi, S., Al Buqain, R., Alqudah, D. A., Al-Kadash, A., Al-Azzawi, H., Awidi, A. and Bustanji, Y. (2021) Fabrication of aptamer-guided siRNA loaded lipopolyplexes for gene silencing of notch 1 in MDA-mb-231 triple negative breast cancer cell line. J. Drug Deliv. Sci. Technol. 65, 102733.
  33. Gifford, G., Stevenson, W. and Best, G. (2020) Combination of the dual PIM/PI3-kinase inhibitor IBL-202 and venetoclax is effective in diffuse large B-cell lymphoma. Leuk. Lymphoma 61, 3165-3176. https://doi.org/10.1080/10428194.2020.1795156
  34. Goldufsky, J., Wood, S., Hajihossainlou, B., Rehman, T., Majdobeh, O., Kaufman, H., Ruby, C. and Shafikhani, S. (2015) Pseudomonas aeruginosa exotoxin T induces potent cytotoxicity against a variety of murine and human cancer cell lines. J. Med. Microbiol. 64, 164-173. https://doi.org/10.1099/jmm.0.000003
  35. Gordon, M., Maldonado, E. and Danilov, A. (2019) Refractory autoimmune cytopenias treated with venetoclax. HemaSphere 3, e202.
  36. Gross, A. (2016) BCL-2 family proteins as regulators of mitochondria metabolism. Biochim. Biophys. Acta Bioenerg. 1857, 1243-1246. https://doi.org/10.1016/j.bbabio.2016.01.017
  37. Haldar, S., Negrini, M., Monne, M., Sabbioni, S. and Croce, C. (1994) Down-regulation of bcl-2 by p53 in breast cancer cells. Cancer Res. 54, 2095-2097.
  38. Han, Y. H. and Park, W. H. (2009) Growth inhibition in antimycin A treated-lung cancer Calu-6 cells via inducing a G1 phase arrest and apoptosis. Lung Cancer 65, 150-160. https://doi.org/10.1016/j.lungcan.2008.11.005
  39. Harb, A. A., Bustanji, Y. K. and Abdalla, S. S. (2018) Hypocholesterolemic effect of β-caryophyllene in rats fed cholesterol and fat enriched diet. J. Clin. Biochem. Nutr. 62, 230-237.
  40. Hassig, C. A., Zeng, F. Y., Kung, P., Kiankarimi, M., Kim, S., Diaz, P. W., Zhai, D., Welsh, K., Morshedian, S., Su, Y., O'Keefe, B., Newman, D. J., Rusman, Y., Kaur, H., Salomon, C. E., Brown, S. G., Baire, B., Michel, A. R., Hoye, T. R., Francis, S., Georg, G. I., Walters, M. A., Divlianska, D. B., Roth, G. P., Wright, A. E. and Reed, J. C. (2014) Ultra-high-throughput screening of natural product extracts to identify proapoptotic inhibitors of Bcl-2 family proteins. J. Biomol. Screen. 19, 1201-1211. https://doi.org/10.1177/1087057114536227
  41. Huber, H., Edenhofer, S., von Tresckow, J., Robrecht, S., Zhang, C., Tausch, E., Schneider, C., Bloehdorn, J., Furstenau, M., Dreger, P., Ritgen, M., Illmer, T., Illert, A. L., Durig, J., Bottcher, S., Niemann, C. U., Kneba, M., Fink, A. M., Fischer, K., Dohner, H., Hallek, M., Eichhorst, B. and Stilgenbauer, S. (2022) Obinutuzumab (GA-101), ibrutinib, and venetoclax (GIVe) frontline treatment for high-risk chronic lymphocytic leukemia. Blood 139, 1318-1329. https://doi.org/10.1182/blood.2021013208
  42. Jin, H., Zhang, Y., Yu, S., Du, X., Xu, N., Shao, R., Lin, D., Chen, Y., Xiao, J., Sun, Z., Deng, L., Liang, X., Zhang, H., Guo, Z., Dai, M., Shi, P., Huang, F., Fan, Z., Yin, Z., Xuan, L., Lin, R., Jiang, X., Yu, G. and Liu, Q. (2023) Venetoclax combined with azacitidine and homoharringtonine in relapsed/refractory AML: a multicenter, phase 2 trial. J. Hematol. Oncol. 16, 42.
  43. Jin, L., Tabe, Y., Kojima, K., Shikami, M., Benito, J., Ruvolo, V., Wang, R. Y., McQueen, T., Ciurea, S. O., Miida, T., Andreeff, M. and Konopleva, M. (2013) PI3K inhibitor GDC-0941 enhances apoptotic effects of BH-3 mimetic ABT-737 in AML cells in the hypoxic bone marrow microenvironment. J. Mol. Med. 91, 1383-1397. https://doi.org/10.1007/s00109-013-1076-3
  44. Kaiser, U., Schilli, M., Haag, U., Neumann, K., Kreipe, H., Kogan, E. and Havemann, K. (1996) Expression of bcl-2 - protein in small cell lung cancer. Lung Cancer 15, 31-40. https://doi.org/10.1016/0169-5002(96)00568-5
  45. Kasabri, V., Afifi, F. U., Abu-Dahab, R., Mhaidat, N., Bustanji, Y. K., Abaza, I. M. and Mashallah, S. (2014) In vitro modulation of metabolic syndrome enzymes and proliferation of obesity related-colorectal cancer cell line panel by salvia species from jordan. Rev. Roumaine Chim. 59, 693-705.
  46. Ke, F. S., Holloway, S., Uren, R. T., Wong, A. W., Little, M. H., Kluck, R. M., Voss, A. K. and Strasser, A. (2022) The BCL-2 family member BID plays a role during embryonic development in addition to its BH3-only protein function by acting in parallel to BAX, BAK and BOK. EMBO J. 41, e110300.
  47. Kerr, J. F. R. (2002) History of the events leading to the formulation of the apoptosis concept. Toxicology 181-182, 471-474. https://doi.org/10.1016/S0300-483X(02)00457-2
  48. Khdair, A., Hamad, I., Alkhatib, H., Bustanji, Y., Mohammad, M., Tayem, R. and Aiedeh, K. (2016) Modified-chitosan nanoparticles: novel drug delivery systems improve oral bioavailability of doxorubicin. Eur. J. Pharm. Sci. 93, 38-44. https://doi.org/10.1016/j.ejps.2016.07.012
  49. Khoshnood, S., Fathizadeh, H., Neamati, F., Negahdari, B., Baindara, P., Abdullah, M. A. and Haddadi, M. H. (2022) Bacteria-derived chimeric toxins as potential anticancer agents. Front. Oncol. 12, 953678.
  50. Kim, H., Rafiuddin-Shah, M., Tu, H. C., Jeffers, J. R., Zambetti, G. P., Hsieh, J. J. D. and Cheng, E. H. Y. (2006a) Hierarchical regulation of mitochondrion-dependent apoptosis by BCL-2 subfamilies. Nature Cell Biol. 8, 1348-1358. https://doi.org/10.1038/ncb1499
  51. Kim, J., Shim, M. K., Yang, S., Moon, Y., Song, S., Choi, J., Kim, J. and Kim, K. (2021) Combination of cancer-specific prodrug nanoparticle with Bcl-2 inhibitor to overcome acquired drug resistance. J. Control. Release 330, 920-932. https://doi.org/10.1016/j.jconrel.2020.10.065
  52. Kim, R., Emi, M., Tanabe, K., Murakami, S., Uchida, Y. and Arihiro, K. (2006b) Regulation and interplay of apoptotic and non-apoptotic cell death. J. Pathol. 208, 319-326. https://doi.org/10.1002/path.1885
  53. Kitamura, Y., Shimohama, S., Kamoshima, W., Ota, T., Matsuoka, Y., Nomura, Y., Smith, M. A., Perry, G., Whitehouse, P. J. and Taniguchi, T. (1998) Alteration of proteins regulating apoptosis, Bcl-2, Bclx, Bax, Bak, Bad, ICH-1 and CPP32, in Alzheimer's disease. Brain Res. 780, 260-269.
  54. Kohlhapp, F. J., Haribhai, D., Mathew, R., Duggan, R., Ellis, P. A., Wang, R., Lasater, E. A., Shi, Y., Dave, N., Riehm, J. J., Robinson, V. A., Do, A. D., Li, Y., Orr, C. J., Sampath, D., Raval, A., Merchant, M., Bhathena, A., Salem, A. H., Hamel, K. M., Leverson, J. D., Donawho, C., Pappano, W. N. and Uziel, T. (2021) Venetoclax increases intratumoral effector t cells and antitumor efficacy in combination with immune checkpoint blockade. Cancer Discov. 11, 68-79. https://doi.org/10.1158/2159-8290.CD-19-0759
  55. Konig, S., Rissler, V., Terkelsen, T., Lambrughi, M. and Papaleo, E. (2019) Alterations of the interactome of Bcl-2 proteins in breast cancer at the transcriptional, mutational and structural level. PLOS Comput. Biol. 15, e1007485.
  56. Konopleva, M., Watt, J., Contractor, R., Tsao, T., Harris, D., Estrov, Z., Bornmann, W., Kantarjian, H., Viallet, J., Samudio, I. and Andreeff, M. (2008) Mechanisms of antileukemic activity of the novel Bcl-2 homology domain-3 mimetic GX15-070 (Obatoclax). Cancer Res. 68, 3413-3420. https://doi.org/10.1158/0008-5472.CAN-07-1919
  57. Kuehl, T. and Lagares, D. (2018) BH3 mimetics as anti-fibrotic therapy: unleashing the mitochondrial pathway of apoptosis in myofibroblasts. Matrix Biol. 68-69, 94-105. https://doi.org/10.1016/j.matbio.2018.01.020
  58. Kulbay, M., Paimboeuf, A., Ozdemir, D. and Bernier, J. (2022) Review of cancer cell resistance mechanisms to apoptosis and actual targeted therapies. J. Cell. Biochem. 123, 1736-1761. https://doi.org/10.1002/jcb.30173
  59. Kuwana, T., Bouchier-Hayes, L., Chipuk, J. E., Bonzon, C., Sullivan, B. A., Green, D. R. and Newmeyer, D. D. (2005) BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol. Cell 17, 525-535. https://doi.org/10.1016/j.molcel.2005.02.003
  60. Lafi, Z., Alshaer, W., Hatmal, M. M., Zihlif, M., Alqudah, D. A., Nsairat, H., Azzam, H., Aburjai, T., Bustanji, Y. and Awidi, A. (2021) Aptamer-functionalized pH-sensitive liposomes for a selective delivery of echinomycin into cancer cells. RSC Adv. 11, 29164-29177. https://doi.org/10.1039/D1RA05138E
  61. Lagares, D., Santos, A., Tager, A. M. and Grasberger, P. E. (2017) Targeted apoptosis of myofibroblasts with the BH3 mimetic ABT-263 reverses established fibrosis. Sci. Transl. Med. 9, eaal3765.
  62. Lasica, M. and Anderson, M. (2021) Review of venetoclax in CLL, AML and multiple myeloma. J. Pers. Med. 11, 463.
  63. Lee, R. T. and Collins, T. (2001) Nuclear factor-κB and cell survival. Circ. Res. 88, 262-264. https://doi.org/10.1161/01.RES.88.3.262
  64. Letai, A., Bassik, M. C., Walensky, L. D., Sorcinelli, M. D., Weiler, S. and Korsmeyer, S. J. (2002) Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2, 183-192. https://doi.org/10.1016/S1535-6108(02)00127-7
  65. Li, J., Viallet, J. and Haura, E. B. (2008) A small molecule pan-Bcl-2 family inhibitor, GX15-070, induces apoptosis and enhances cisplatin-induced apoptosis in non-small cell lung cancer cells. Cancer Chemother. Pharmacol. 61, 525-534. https://doi.org/10.1007/s00280-007-0499-3
  66. Liu, T., Zhang, L. and Joo, D. (2017) NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2, e17023.
  67. Liu, Y., Li, J. and Zhou, G. (2023) Design, synthesis and anticancer activity studies of novel indole derivatives as Bcl-2/Mcl-1 dual inhibitors. Med. Chem. Res. 32, 99-108. https://doi.org/10.1007/s00044-022-02991-y
  68. Luna-Lopez, A., Gonzalez-Puertos, V. Y., Romero-Ontiveros, J., Ventura-Gallegos, J. L., Zentella, A., Gomez-Quiroz, L. E. and Konigsberg, M. (2013) A noncanonical NF-κB pathway through the p50 subunit regulates Bcl-2 overexpression during an oxidative-conditioning hormesis response. Free Radic. Biol. Med. 63, 41-50. https://doi.org/10.1016/j.freeradbiomed.2013.04.033
  69. Matalqah, S. M., Aiedeh, K., Mhaidat, N. M., Alzoubi, K. H., Bustanji, Y. and Hamad, I. (2020) Chitosan nanoparticles as a novel drug delivery system: a review article. Curr. Drug Targets 21, 1613-1624. https://doi.org/10.2174/1389450121666200711172536
  70. McIlwain, D., Berger, T. and Mak, T. (2013) Caspase functions in cell death and disease. Cold Spring Harb. Perspect. Biol. 5, a008656.
  71. Mei, J., Liu, G., Li, R., Xiao, P., Yang, D., Bai, H. and Hao, Y. (2021) LncRNA SNHG6 knockdown inhibits cisplatin resistance and progression of gastric cancer through miR-1297/BCL-2 axis. Biosci. Rep. 41, Bsr20211885.
  72. Mohammad, M., Al-Masri, I. M., Issa, A., Khdair, A. and Bustanji, Y. (2013) Inhibition of pancreatic lipase by berberine and dihydroberberine: an investigation by docking simulation and experimental validation. Med. Chem. Res. 22, 2273-2278. https://doi.org/10.1007/s00044-012-0221-9
  73. Moncsek, A., Al-Suraih, M. S., Mertens, J. C. and LaRusso, N. F. (2018) Targeting senescent cholangiocytes and activated fibroblasts with B-cell lymphoma-extra large inhibitors ameliorates fibrosis in multidrug resistance 2 gene knockout (Mdr2-/-) mice. Hepatology 67, 247-259. https://doi.org/10.1002/hep.29464
  74. Motawi, T. M. K., Bustanji, Y., El-Maraghy, S., Taha, M. O. and AlGhussein, M. A. S. (2014) Evaluation of naproxen and cromolyn activities against cancer cells viability, proliferation, apoptosis, p53 and gene expression of survivin and caspase-3. J. Enzyme Inhib. Med. Chem. 29, 153-161. https://doi.org/10.3109/14756366.2012.762645
  75. Nakashima, T., Miura, M. and Hara, M. (2000) Tetrocarcin A inhibits mitochondrial functions of Bcl-2 and suppresses its anti-apoptotic activity. Cancer Res. 60, 1229-1235.
  76. Ozaki, T. and Nakagawara, A. (2011) Role of p53 in cell death and human cancers. Cancers 3, 994-1013. https://doi.org/10.3390/cancers3010994
  77. Pang, X., Lin, X., Wang, P., Zhou, X., Yang, B., Wang, J. and Liu, Y. (2018) Perylenequione derivatives with anticancer activities isolated from the marine sponge-derived fungus, alternaria sp. SCSIO41014. Mar. Drugs 16, 280.
  78. Park, W. H., Han, Y. W., Kim, S. W., Kim, S. H., Cho, K. W. and Kim, S. Z. (2007) Antimycin A induces apoptosis in As4.1 juxtaglomerular cells. Cancer Lett. 251, 68-77. https://doi.org/10.1016/j.canlet.2006.11.002
  79. Patra, J. K., Das, G. and Fraceto, L. F. (2018) Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnology 16, 71.
  80. Pemberton, J., Pogmore, J. and Andrews, D. (2021) Neuronal cell life, death, and axonal degeneration as regulated by the BCL-2 family proteins. Cell Death Differ. 28, 108-122. https://doi.org/10.1038/s41418-020-00654-2
  81. Prado, G., Kaestner, C. L., Licht, J. D. and Bennett, R. L. (2021) Targeting epigenetic mechanisms to overcome venetoclax resistance. Biochim. Biophys. Acta Mol. Cell Res. 1868, 119047.
  82. Prew, M. S., Adhikary, U., Choi, D. W., Portero, E. P., Paulo, J. A., Gowda, P., Budhraja, A., Opferman, J. T., Gygi, S. P., Danial, N. N. and Walensky, L. D. (2022) MCL-1 is a master regulator of cancer dependency on fatty acid oxidation. Cell Rep. 41, 111445.
  83. Puthier, D., Bataille, R. and Amiot, M. (1999) IL-6 up-regulates Mcl-1 in human myeloma cells through JAK/STAT rather than Ras/MAP kinase pathway. Eur. J. Immunol. 29, 3945-3950. https://doi.org/10.1002/(SICI)1521-4141(199912)29:12<3945::AID-IMMU3945>3.0.CO;2-O
  84. Qasem, A., Kasabri, V., Aburish, E., Bustanji, Y., Al-Hiari, Y., Al-Abbasi, R., Abu-Irmaileh, B. and Alalawi, S. (2020) The evaluation of potential cytotoxic effect of different proton pump inhibitors on different human cancer cell lines. Anti-Cancer Agents Med. Chem. 20, 245-253. https://doi.org/10.2174/1871520619666191029151545
  85. Qian, S., Wei, Z., Yang, W., Huang, J., Yang, Y. and Wang, J. (2022) The role of BCL-2 family proteins in regulating apoptosis and cancer therapy. Front. Oncol. 12, 985363.
  86. Rasmussen, M. L., Taneja, N., Neininger, A. C., Wang, L., Robertson, G. L., Riffle, S. N., Shi, L., Knollmann, B. C., Burnette, D. T. and Gama, V. (2020) MCL-1 inhibition by selective BH3 mimetics disrupts mitochondrial dynamics causing loss of viability and functionality of human cardiomyocytes. iScience 23, 101015.
  87. Robak, E., Jesionek-Kupnicka, D., Stelmach, P., Kupnicki, P., Szataniak, M. and Robak, T. (2022) Leukemia cutis in accelerated chronic lymphocytic leukemia: successful treatment with venetoclax and rituximab. Ann. Hematol. 101, 1387-1392. https://doi.org/10.1007/s00277-022-04753-7
  88. Roberts, A. W., Wei, A. H. and Huang, D. C. S. (2021) BCL2 and MCL1 inhibitors for hematologic malignancies. Blood 138, 1120-1136. https://doi.org/10.1182/blood.2020006785
  89. Sahin, K., Orhan, M., Avsar, T. and Durdagi, S. (2021) Hybrid in silico and TR-FRET-guided discovery of novel BCL-2 inhibitors. ACS Pharmacol. Transl. Sci. 4, 1111-1123.
  90. Saraste, A. and Pulkki, K. (2000) Morphologic and biochemical hallmarks of apoptosis. Cardiovasc. Res. 45, 528-537. https://doi.org/10.1016/S0008-6363(99)00384-3
  91. Sawa, A., Oyama, F., Cairns, N. J., Amano, N. and Matsushita, M. (1997) Aberrant expression of bcl-2 gene family in Down's syndrome brains. Mol. Brain Res. 48, 53-59. https://doi.org/10.1016/S0169-328X(97)00078-8
  92. Scheipl, S., Barnard, M., Lohberger, B., Zettl, R., Brcic, I., Liegl-Atzwanger, B., Rinner, B., Meindl, C. and Frohlich, E. (2021) Drug combination screening as a translational approach toward an improved drug therapy for chordoma. Cell. Oncol. 44, 1231-1242. https://doi.org/10.1007/s13402-021-00632-x
  93. Schott, A., Apel, I., Nunez, G. and Clarke, M. (1995) Bcl-XL protects cancer cells from p53-mediated apoptosis. Oncogene 11, 1389-1394.
  94. Sejic, N., George, L. C., Tierney, R. J., Chang, C., Kondrashova, O., MacKinnon, R. N., Lan, P., Bell, A. I., Lessene, G., Long, H. M., Strasser, A., Shannon-Lowe, C. and Kelly, G. L. (2020) BCL-XL inhibition by BH3-mimetic drugs induces apoptosis in models of Epstein-Barr virus-associated T/NK-cell lymphoma. Blood Adv. 4, 4775-4787.
  95. Shamas-Din, A., Brahmbhatt, H., Leber, B. and Andrews, D. W. (2011) BH3-only proteins: orchestrators of apoptosis. Biochim. Biophys. Acta Mol. Cell Res. 1813, 508-520. https://doi.org/10.1016/j.bbamcr.2010.11.024
  96. Sun, Y., Jiang, W. and Luo, Q. (2020) A novel Bcl-2 inhibitor, BM-1197, induces apoptosis in malignant lymphoma cells through the endogenous apoptotic pathway. BMC Cancer 20, 1.
  97. Tanaka, M., Nakae, S., Terry, R. D., Mokhtari, G. K., Gunawan, F., Balsam, L. B., Kaneda, H., Kofidis, T., Tsao, P. S. and Robbins, R. C. (2004) Cardiomyocyte-specific Bcl-2 overexpression attenuates ischemia-reperfusion injury, immune response during acute rejection, and graft coronary artery disease. Blood 104, 3789-3796. https://doi.org/10.1182/blood-2004-02-0666
  98. Tannan, N. B., Manzari, M. T., Herviou, L., Silva Ferreira, M. D., Hagen, C., Kiguchi, H., Manova-Todorova, K., Seshan, V., Stanchina, E. D., Heller, D. A. and Younes, A. (2021) Tumor-targeted nanoparticles improve the therapeutic index of BCL2 and MCL1 dual inhibition. Blood 137, 2057-2069. https://doi.org/10.1182/blood.2020008017
  99. Tarawneh, N., Hamadneh, L., Abu-Irmaileh, B., Shraideh, Z., Bustanji, Y. and Abdalla, S. (2023) Berberine inhibited growth and migration of human colon cancer cell lines by increasing phosphatase and tensin and inhibiting aquaporins 1, 3 and 5 expressions. Molecules 28, 3823.
  100. Thornburg, C. C., Britt, J. R., Evans, J. R., Akee, R. K., Whitt, J. A., Trinh, S. K., Harris, M. J., Thompson, J. R., Ewing, T. L., Shipley, S. M., Grothaus, P. G., Newman, D. J., Schneider, J. P., Grkovic, T. and O'Keefe, B. R. (2018) NCI program for natural product discovery: a publicly-accessible library of natural product fractions for high-throughput screening. ACS Chem. Biol. 13, 2484-2497. https://doi.org/10.1021/acschembio.8b00389
  101. Tischner, D., Gaggl, I., Peschel, I., Kaufmann, M., Tuzlak, S., Drach, M., Thuille, N., Villunger, A. and Jan Wiegers, G. (2012) Defective cell death signalling along the Bcl-2 regulated apoptosis pathway compromises Treg cell development and limits their functionality in mice. J. Autoimmun. 38, 59-69. https://doi.org/10.1016/j.jaut.2011.12.008
  102. Tong, J., Zheng, X., Tan, X., Fletcher, R., Nikolovska-Coleska, Z., Yu, J. and Zhang, L. (2018) Mcl-1 Phosphorylation without degradation mediates sensitivity to hdac inhibitors by liberating bh3-only proteins. Cancer Res. 78, 4704-4715. https://doi.org/10.1158/0008-5472.CAN-18-0399
  103. Tron, A. E., Belmonte, M. A. and Adam, A. (2018) Discovery of Mcl-1-specific inhibitor AZD5991 and preclinical activity in multiple myeloma and acute myeloid leukemia. Nat. Commun. 9, 5341.
  104. Tsujimoto, Y. (1998) Role of Bcl-2 family proteins in apoptosis: apoptosomes or mitochondria? Genes Cells 3, 697-707. https://doi.org/10.1046/j.1365-2443.1998.00223.x
  105. Vellanki, S., Cruz, R., Richards, C., Smith, Y., Hudson, L, Jahns, H. and Hopkins, A. (2019) Antibiotic Tetrocarcin-A down-regulates JAM-A, IAPs and induces apoptosis in triple-negative breast cancer models. Anticancer Res. 39, 1197-1204. https://doi.org/10.21873/anticanres.13230
  106. Villalobos-Ortiz, M., Ryan, J., Mashaka, T., Opferman, J. and Letai, A. (2020) BH3 profiling discriminates on-target small molecule BH3 mimetics from putative mimetics. Cell Death Differ. 27, 999-1007. https://doi.org/10.1038/s41418-019-0391-9
  107. Vucic, D., Dixit, V. and Wertz, I. (2011) Ubiquitylation in apoptosis: a post-translational modification at the edge of life and death. Nat. Rev. Mol. Cell Biol. 12, 439-452. https://doi.org/10.1038/nrm3143
  108. Wang, B. R., Wan, C. L., Liu, S. B., Qiu, Q. C., Wu, T. M., Wang, J., Li, Y. Y., Ge, S. S., Qiu, Y., Shen, X. D., Xue, S. L. and Li, Z. (2021a) A combined histone deacetylases targeting strategy to overcome venetoclax plus azacitidine regimen resistance in acute myeloid leukaemia: three case reports. Front. Oncol. 11, 797941.
  109. Wang, H., Guo, M. and Wei, H. (2021b) Targeting MCL-1 in cancer: current status and perspectives. J. Hematol. Oncol. 14, 67.
  110. Wang, L., Sloper, D., Addo, S., Tian, D., Slaton, J. and Xing, C. (2008) WL-276, an antagonist against Bcl-2 proteins, overcomes drug resistance and suppresses prostate tumor growth. Cancer Res. 68, 4377-4383. https://doi.org/10.1158/0008-5472.CAN-07-6590
  111. Weller, S., Toenniessen, A., Schaefer, B., Beigl, T., Muenchow, A., Bopple, K., Hofmann, U., Gillissen, B. F., Aulitzky, W. E., Kopp, H. G. and Essmann, F. (2022) The BCL-2 inhibitor ABT-199/venetoclax synergizes with proteasome inhibition via transactivation of the MCL-1 antagonist NOXA. Cell Death Discov. 8, 215.
  112. Wolf, P. and Elsasser-Beile, U. (2009) Pseudomonas exotoxin A: from virulence factor to anti-cancer agent. Int. J. Med. Microbiol. 299, 161-176. https://doi.org/10.1016/j.ijmm.2008.08.003
  113. Wu, C. C. and Bratton, S. B. (2013) Regulation of the intrinsic apoptosis pathway by reactive oxygen species. Antioxid. Redox Signal. 19, 546-558. https://doi.org/10.1089/ars.2012.4905
  114. Xie, X., Zu, X., Liu, F., Wang, T., Wang, X., Chen, H., Liu, K., Wang, P., Liu, F., Zheng, Y., Bode, A. M., Dong, Z. and Kim, D. J. (2019) Purpurogallin is a novel mitogen-activated protein kinase kinase 1/2 inhibitor that suppresses esophageal squamous cell carcinoma growth in vitro and in vivo. Mol. Carcinog. 58, 1248-1259. https://doi.org/10.1002/mc.23007
  115. Xu, G., Liu, T., Zhou, Y., Yang, X. and Fang, H. (2017) 1-Phenyl-1H-indole derivatives as a new class of Bcl-2/Mcl-1 dual inhibitors: design, synthesis, and preliminary biological evaluation. Bioorg. Med. Chem. 25, 5548-5556. https://doi.org/10.1016/j.bmc.2017.08.024
  116. Xu, G. and Shi, Y. (2007) Apoptosis signaling pathways and lymphocyte homeostasis. Cell Res. 17, 759-771. https://doi.org/10.1038/cr.2007.52
  117. Xu, L., Yang, D., Wang, S., Tang, W., Liu, M., Davis, M., Chen, J., Rae, J. M., Lawrence, T. and Lippman, M. E. (2005) (-)-Gossypol enhances response to radiation therapy and results in tumor regression of human prostate cancer. Mol. Cancer Ther. 4, 197-205. https://doi.org/10.1158/1535-7163.197.4.2
  118. Yi, X., Sarkar, A., Kismali, G., Aslan, B., Ayres, M., Iles, L. R., Keating, M. J., Wierda, W. G., Long, J. P., Sabrina Bertilaccio, M. T. and Gandhi, V. (2020) AMG-176, an Mcl-1 antagonist, shows preclinical efficacy in chronic lymphocytic leukemia. Clin. Cancer Res. 26, 3856-3867. https://doi.org/10.1158/1078-0432.CCR-19-1397
  119. Zerp, S. F., Stoter, R., Kuipers, G., Yang, D., Lippman, M. E., van Blitterswijk, W. J., Bartelink, H., Rooswinkel, R., Lafleur, V. and Verheij, M. (2009) AT-101, a small molecule inhibitor of anti-apoptotic Bcl-2 family members, activates the SAPK/JNK pathway and enhances radiation-induced apoptosis. Radiat. Oncol. 4, 47.