DOI QR코드

DOI QR Code

Key Elements for Standardizing the Estimation of Greenhouse Gas Emissions Reduction Induced by Remanufactured Products

재제조품의 온실가스배출 저감효과 산정 표준화를 위한 핵심 요소 도출

  • Nam Seok Kim (Program in Circular Economy Environmental System, Graduate School, Inha University) ;
  • Kook Pyo Pae (Program in Circular Economy Environmental System, Graduate School, Inha University) ;
  • Jae Hak No (Program in Circular Economy Environmental System, Graduate School, Inha University) ;
  • Hong-Yoon Kang (Program in Circular Economy Environmental System, Graduate School, Inha University) ;
  • Yong Woo Hwang (Department of Environmental Engineering, Inha University)
  • 김남석 (인하대학교 순환경제환경시스템전공) ;
  • 배국표 (인하대학교 순환경제환경시스템전공) ;
  • 노재학 (인하대학교 순환경제환경시스템전공) ;
  • 강홍윤 (인하대학교 순환경제환경시스템전공) ;
  • 황용우 (인하대학교 환경공학과)
  • Received : 2024.03.22
  • Accepted : 2024.04.09
  • Published : 2024.04.30

Abstract

Although the Paris Agreement in 2015 aimed to limit global temperature increases to below 2℃ and eventually to 1.5℃ to address the climate crisis, global temperature continues to rise. Developed countries have proposed a circular economy as a major strategy to tackle this issue. Detailed implementation methods include reusing, remanufacturing, recycling, and energy recovery. Remanufacturing has a greater potential to achieve high added value and carbon neutrality than other resource circulation methods. However, currently, no standardized method for quantitatively evaluating the greenhouse gas (GHG) reduction effects of remanufacturing exists. This study compares and analyzes recent research trends since 2020 on the calculation of GHG emission reduction effects from remanufacturing. It also examines international standards for environmental impact assessment, including GHGs and environmental performance labeling systems. This study derives the key factors for standardizing the calculation of the GHG emission reduction effects of remanufactured products.

기후 위기에 대응하고자 지난 2015년 파리협정에서 지구 온도상승을 2℃보다 아래로 유지하고 나아가 1.5℃ 아래로 억제하기 위한 목표를 설정하였음에도 불구하고, 지구 온도는 계속 상승 중에 있다. 실질적으로 이에 대응하기 위한 주요 전략으로 선진국들은 순환경제 실현을 제시하고 있으며, 세부 이행 방법으로는 재사용, 재제조, 재활용, 에너지 회수 등이 있다. 그중 재제조는 다른 자원순환 방법보다도 고부가가치 및 탄소중립 달성에 큰 잠재력을 가지고 있지만, 재제조를 통한 온실가스 저감효과를 정량적으로 평가할 수 있는 표준화된 방법이 부재한 상황이다. 이에 본 연구에서는 재제조에 의한 온실가스배출 감축효과 산정에 관한 2020년 이후의 최근 연구동향과 온실가스를 포함한 환경영향 평가 국제 표준 및 환경성적표지제도를 비교·분석함으로써 재제조품의 온실가스배출 저감효과 산정 표준화를 위한 핵심 요소를 도출하였다.

Keywords

Acknowledgement

이 논문은 정부(환경부)의 재원으로 한국환경산업기술원의 지원을 받아 수행된 연구(지식기반 환경서비스 특성화대학원사업)임.

References

  1. Sang-Man Kim, 2016 : A Study on the Historical Significance and the Limits of the Paris Agreement, Ajou Law Review, 9(4), pp.225-249.  https://doi.org/10.21589/AJLAW.2016.9.4.225
  2. Ministry of Culture, Sports and Tourism, Republic of Korea Policy Briefing '2050 Carbon Neutrality'. https://www.korea.kr/special/policyCurationView.do?newsId=148881562, March 13, 2024. 
  3. Hong-Yoon Kang, Young-Chun Kim, 2017 : Sustainable Growth Strategy through the Analysis of Korean Remanufacturing Industry 'Focusing on Automobile Industry Field', KIC News, 20(5), pp.1-12. 
  4. Hong-Yoon Kang, Nam Hoon Chung, Yong Woo Hwang, 2022 : Remanufacturing Engineering, pp.10-11, Yejark, Korea. 
  5. Abdullah, Z. T., 2024 : Remanufacturing waste steel sheet from end-of-life vehicles into electrical installation wall junction boxes: Quantitative sustainability assessment, Results in Engineering, 21, 101767, pp.1-11. 
  6. Henao, Y., Grubert, E., Korey, M., et al., 2024 : Life Cycle Assessment and Life Cycle Cost Analysis of Repurposing Decommissioned Wind Turbine Blades as High-Voltage Transmission Poles, Journal of Construction Engineering and Management, 150(5), 05024004, pp.1-15. 
  7. Bogachuk, D., van der Windt, P., Wagner, L., et al., 2024 : Remanufacturing perovskite solar cells and modules-a holistic case study, ACS Sustainable Resource Management. 
  8. Yang, S. J., Hwang, Y. W., Kim, Y. W., et al., 2024 : Environmental and Economic Benefits Induced by a Remanufactured Portable Power Station, Energies, 17(4), 793, pp.1-7. 
  9. Wralsen, B., O'Born, R., 2023 : Use of life cycle assessment to evaluate circular economy business models in the case of Li-ion battery remanufacturing, The International Journal of Life Cycle Assessment, 28(5), pp.554-565. 
  10. Kamath, D., Moore, S., Arsenault, R., et al., 2023 : A system dynamics model for end-of-life management of electric vehicle batteries in the US: Comparing the cost, carbon, and material requirements of remanufacturing and recycling, Resources, Conservation and Recycling, 196, 107061, pp.1-10. 
  11. Russell, J. D., Nasr, N. Z., 2023 : Value-retained vs. impacts avoided: the differentiated contributions of remanufacturing, refurbishment, repair, and reuse within a circular economy, Journal of Remanufacturing, 13(1), pp.25-51. 
  12. Chen, Q., Lai, X., Hou, Y., et al., 2023 : Investigating the environmental impacts of different direct material recycling and battery remanufacturing technologies on two types of retired lithium-ion batteries from electric vehicles in China, Separation and Purification Technology, 308, 122966, pp. 1-14. 
  13. Yuksek, Y. A., Haddad, Y., Pagone, E., et al., 2023 : Sustainability Assessment of Electronic Waste Remanufacturing: The Case of Laptop, Procedia CIRP, 116, pp.378-383. 
  14. Abdullah, Z. T., 2023 : Quantitative sustainability assessment of remanufacturing waste reinforcing steel, Environmental Quality Management, 32(4), pp.223-235. 
  15. Jong-Hyo Lee, Hong-Yoon Kang, Young Woo Hwang, et al., 2023 : Analysis of the life cycle environmental impact reductions of remanufactured turbochargers, Journal of Remanufacturing, 13(2), pp.187-206. 
  16. Schlesinger, L., Koller, J., Pagels, M., et al., 2023 : Alignment of design rules for additive manufacturing and remanufacturing, Journal of Remanufacturing, 13(2), pp.99-119. 
  17. Liu, C., Meng, X., Liu, C., et al., 2023 : Carbon footprintbased optimization method for remanufacturing machining paths, The International Journal of Advanced Manufacturing Technology, 124(10), pp.3391-3406. 
  18. Taleizadeh, A. A., Moshtagh, M. S., Vahedi-Nouri, B., et al., 2023 : New products or remanufactured products: Which is consumer-friendly under a closed-loop multi-level supply chain?, Journal of Retailing and Consumer Services, 73, 103295, pp.1-23. 
  19. Geon Yong Kim, Yong Woo Hwang, Hyung Joo Roh, et al., 2023 : Environmental Evaluation for the Remanufacturing of Drilling Machine, Journal of Environmental Management, 15, pp.113-125. 
  20. Meister, J. A., Sharp, J., Wang, Y., et al., 2022 : Assessing long-term medical remanufacturing emissions with Life Cycle Analysis, Processes, 11(1), 36, pp.1-27.  https://doi.org/10.3390/pr11010001
  21. Chen, Q., Lai, X., Gu, H., et al., 2022 : Investigating carbon footprint and carbon reduction potential using a cradle-to-cradle LCA approach on lithium-ion batteries f or electric vehicles in China, Journal of Cleaner Production, 369, 133342, pp.1-10.  https://doi.org/10.1016/j.jclepro.2022.133342
  22. Nagle, A. J., Mullally, G., Leahy, P. G., et al., 2022 : Life cycle assessment of the use of decommissioned wind blades in second life applications, Journal of environmental management, 302, 113994, pp.1-15.  https://doi.org/10.1016/j.jenvman.2021.113994
  23. Du, S., Gao, F., Nie, Z., et al., 2022 : Life cycle assessment of recycled NiCoMn ternary cathode materials prepared by hydrometallurgical technology for power batteries in China, Journal of Cleaner Production, 340, 130798, pp. 1-11.  https://doi.org/10.1016/j.jclepro.2022.130798
  24. Kanazawa, T., Matsumoto, M., Yoshimoto, M., et al., 2022 : Environmental impact of remanufacturing mining machinery, Sustainability, 14(13), 8118, pp.1-16.  https://doi.org/10.3390/su14138118
  25. Alanya-Rosenbaum, S., Bergman, R., Gething, B., et al., 2022 : Life cycle assessment of the wood pallet repair and remanufacturing sector in the United States, Biofuels, Bioproducts and Biorefining, 16(5), pp.1342-1352.  https://doi.org/10.1002/bbb.2379
  26. Rizan, C., Brophy, T., Lillywhite, R., et al., 2022 : Life cycle assessment and life cycle cost of repairing surgical scissors, The International Journal of Life Cycle Assessment, 27(6), pp.780-795.  https://doi.org/10.1007/s11367-022-02064-7
  27. Peng, S., Ping, J., Li, T., et al., 2022 : Environmental benefits of remanufacturing mechanical products: a harmonized meta-analysis of comparative life cycle assessment studies, Journal of Environmental Management, 306, 114479, pp.1-13.  https://doi.org/10.1016/j.jenvman.2022.114479
  28. Zhang, Z., Matsubae, K., Nakajima, K., 2021 : Impact of remanufacturing on the reduction of metal losses through the life cycles of vehicle engines, Resources, Conservation and Recycling, 170, 105614, pp.1-10.  https://doi.org/10.1016/j.resconrec.2021.105614
  29. Yu, M., Bai, B., Xiong, S., et al., 2021 : Evaluating environmental impacts and economic performance of remanufacturing electric vehicle lithium-ion batteries, Journal of Cleaner Production, 321, 128935, pp.1-11.  https://doi.org/10.1016/j.jclepro.2021.128935
  30. Aguilar Esteva, L. C., Kasliwal, A., Kinzler, M. S., et al., 2021 : Circular economy framework for automobiles: Closing energy and material loops, Journal of Industrial Ecology, 25(4), pp.877-889.  https://doi.org/10.1111/jiec.13088
  31. Wolfram, P., Tu, Q., Heeren, N., et al., 2021 : Material efficiency and climate change mitigation of passenger vehicles, Journal of Industrial Ecology, 25(2), pp.494-510.  https://doi.org/10.1111/jiec.13067
  32. Schulte, A., Maga, D., Thonemann, N., 2021 : Combining life cycle assessment and circularity assessment to analyze environmental impacts of the medical remanufacturing of electrophysiology catheters, Sustainability, 13(2), 898, pp. 1-22.  https://doi.org/10.3390/su13020898
  33. Wralsen, B., O'Born, R., 2023 : Use of life cycle assessment to evaluate circular economy business models in the case of Li-ion battery remanufacturing, The International Journal of Life Cycle Assessment, 28(5), pp.554-565. 
  34. Bobba, S., Tecchio, P., Ardente, F., et al., 2020 : Analysing the contribution of automotive remanufacturing to the circularity of materials, Procedia CIRP, 90, pp.67-72.  https://doi.org/10.1016/j.procir.2020.02.052
  35. ISO, ISO 14040:2006 Environmental Management-Life Cycle Assessment-Principles and framework. https://www.iso.org/standard/37456.html, March 13, 2024. 
  36. ISO, ISO 14067:2018 Greenhouse gases-Carbon footprint of products-Requirements and guidelines for quantification. https://www.iso.org/standard/71206.html, March 13, 2024. 
  37. BSI Group, PAS 2050:2011 Specification for the assessment of the life cycle greenhouse gas emissions of goods and services. https://www.en-standard.eu/pas-2050-2011, March 13, 2024. 
  38. WRI, GREENHOUSE GAS PROTOCOL. https://ghgprotocol.org/, March 13, 2024. 
  39. KEITI, ECOSQUARE 'Environmental Product Declaration'. https://ecosq.or.kr/websquare.do#w2xPath=/cm/main/index.xml, March 13, 2024. 
  40. EPD International AB, The International EPD System. https://www.environdec.com/home, March 13, 2024.